Practica 12

Integrales dobles II

Problema 1.

Halle el volumen de la región delimitada por el paraboloide de ecuación

$$
z=x^{2}+y^{2}
$$

y por debajo por el triángulo formado por las lineas:

$$
y=x, x=0 \quad \text { Y } \quad x+y=2
$$

$$
\begin{aligned}
& V=\int_{0}^{1} \int_{x}^{2-x}\left(x^{2}+y^{2}\right) d x d y \\
& =\int_{0}^{1}\left[x^{2} y+\frac{y^{3}}{3}\right]_{x}^{2-x} d x \\
& =\int_{0}^{1}\left[2 x^{2}-\frac{7 x^{3}}{3}+\frac{(2-x)^{3}}{3}\right] d x \\
& =\left[\frac{2 x^{3}}{3}-\frac{7 x^{4}}{12}+\frac{(2-x)^{4}}{12}\right]_{0}^{1} \\
& =\left(\frac{2}{3}-\frac{7}{12}+\frac{1}{12}\right)-\left(\frac{16}{12}\right)=\frac{4}{3}
\end{aligned}
$$

Problema 2.

Halle el volumen del solido que se forma en el primer octante, delimitado por los planos de coordenadas, el cilindro de ecuación

$$
x^{2}+y^{2}=4
$$

y el plano de ecuacion

$$
z+y=3
$$

$$
\begin{aligned}
& V=\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}}(3-y) d x d y \\
& =\int_{0}^{2}\left[3 y-\frac{y^{2}}{2}\right]_{0}^{\sqrt{4-x^{2}}} d x \\
& =\int_{0}^{2}\left[3 \sqrt{4-x^{2}}-\frac{4-x^{2}}{2}\right] d x \\
& =\left[\frac{3}{2} x \sqrt{4-x^{2}}+6 \operatorname{sen}^{-1}\left(\frac{x}{2}\right)-2 x+\frac{x^{3}}{6}\right]_{0}^{2} \\
& =\frac{6 \pi}{2}-4+\frac{8}{6}=\frac{9 \pi-8}{3}
\end{aligned}
$$

Problema 3.

Halle el volumen del solido formado por el corte del primer octante por el cilindro $z=12-3 y^{2}$ y el plano $x+y=2$.

$$
\begin{aligned}
& V=\int_{0}^{2} \int_{0}^{2-x}\left[12-3 y^{2}\right] d y d x \\
& =\int_{0}^{2}\left[24-12 x-(2-x)^{3}\right] d x \\
& \qquad=\left[24-6 x^{2}-\frac{(2-x)^{4}}{4}\right]_{0}^{2}=20
\end{aligned}
$$

Problema 4.

Un cilindro recto de base no circular, tiene su base en una región R del plano OXY delimitado por arriba por el paraboloide de ecuación

$$
z=x^{2}+y^{2}
$$

$$
15-01-59
$$

El volumen del cilindro esta dado por

$$
V=\int_{0}^{1} \int_{0}^{y}\left(x^{2}+y^{2}\right) d x d y+\int_{1}^{2} \int_{0}^{2-y}\left(x^{2}+y^{2}\right) d x d y
$$

Dibuje la región base (R) y exprese el volumen como una sola integral, haciendo cambio de orden de integración. Finalmente calcule el volumen.

$$
V=\int_{0}^{1} \int_{0}^{y}\left(x^{2}+y^{2}\right) d x d y+\int_{1}^{2} \int_{0}^{2-y}\left(x^{2}+y^{2}\right) d x d y
$$

$$
\begin{aligned}
& V=\int_{0}^{1} \int_{x}^{2-x}\left(x^{2}+y^{2}\right) d x d y \\
& \qquad V=\int_{0}^{1}\left[x^{2} y+\frac{y^{3}}{3}\right]_{x}^{2-x} d x \\
& =\int_{0}^{1}\left[2 x^{2}-\frac{7 x^{3}}{3}+\frac{(2-x)^{3}}{3}\right] d x \\
& =\left[\frac{2 x^{3}}{3}-\frac{7 x^{4}}{12}+\frac{(2-x)^{4}}{12}\right]_{0}^{1}=\frac{4}{3}
\end{aligned}
$$

Ejercicio 1.

Calcular:

$$
\int_{-1}^{1} \int_{-1 / \sqrt{1-x^{2}}}^{1 / \sqrt{1-x^{2}}}(2 y+1) d y d x
$$

(r) 2π

Evaluar la integral:

$$
\int_{0}^{2}\left(\tan ^{-1} \pi x-\tan ^{-1} x\right) d x
$$

Ejercicio 2.

(R) $2 \tan ^{-1} 2 \pi-2 \tan ^{-1} 2-\frac{1}{2 \pi} \ln \left(1+4 \pi^{2}\right)+\frac{\ln 5}{2}$

Que región R del plano OXY maximiza la integral

$$
\iint_{R}\left(4-x^{2}-2 y^{2}\right) d A
$$

Ejercicio 3.

(R) La región R es la elipse $x^{2}+2 y^{2}=4$ y su interior

Problema 4.

Encuentre el centro de masa de una plato delgada de densidad $\delta=3$ delimitado por las lineas $x=0, y=x$, y por la parábola $y=2-x^{2}$ en el primer cuadrante

$$
\begin{aligned}
& M=\int_{0}^{1} \int_{x}^{2-x^{2}}(3) d x d y \quad \begin{array}{c}
\text { La masa } \\
\text { total }
\end{array} \\
&=3 \int_{0}^{1}\left(2-x^{2}-x\right) d x=\frac{7}{2}
\end{aligned}
$$

$$
\begin{aligned}
& M_{y}=3 \int_{0}^{1} \int_{x}^{2-x^{2}}(x) d x d y=3 \int_{0}^{1}(x y)_{x}^{2-x^{2}} d x \\
& =3 \int_{0}^{1}\left(2 x-x^{2}-x^{2}\right) d x=\frac{5}{4} \\
& M_{x}=3 \int_{0}^{1} \int_{x}^{2-x^{2}}(y) d x d y=\frac{19}{5} \\
& \overline{\mathbf{X}}=\frac{5}{14} \\
& \overline{\mathbf{y}}=\frac{38}{35}
\end{aligned}
$$

Problema 5.

Encuentre el momento de inercia respecto al eje y de una lamina delgada de densidad constante $\delta=1$
delimitada por la curva $y=\frac{\operatorname{sen}^{2}(x)}{x^{2}}$ y el intervalo $\pi \leq x \leq 2 \pi$ en el eje x.

$$
I_{x}=\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} y^{2} d y d x=\int_{-2}^{2}\left[\frac{y^{3}}{3}\right]_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} d x
$$

$$
=\frac{2}{3} \int_{-2}^{2}\left(4-x^{2}\right)^{3 / 2} d x=4 \pi
$$

Por simetría tenemos

$$
\mathrm{I}_{\mathrm{y}}=4 \pi
$$

Finalmente

$$
\mathrm{I}_{\mathrm{o}}=\mathrm{I}_{\mathrm{x}}+\mathrm{I}_{\mathrm{y}}=8 \pi
$$

Encuentre el centro de masa de una plato triangular delgado delimitado por las rectas $y=x$ Y $y=2-x$ si la densidad esta dada por:

$$
\delta(x, y)=6 x+3 y+3 .
$$

Ejercicio 4.

(R) $\bar{x}=\frac{3}{8}$

$$
\overline{\mathrm{y}}=\frac{17}{16}
$$

Evaluar las siguientes integrales:

$$
\begin{aligned}
& \text { a) } \int_{-1}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} \ln \left(x^{2}+y^{2}+1\right) d x d y \\
& \text { b) } \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \frac{2}{\left(1+x^{2}+y^{2}\right)^{2}} d y d x
\end{aligned}
$$

Ejercicio 4.

(R) a) $\pi(\ln 4-1)$ b) π

