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Problema 1.

Halle el volumen de la región delimitada por el 
paraboloide de ecuación 

y por debajo por el triángulo formado por las lineas:  
y

15.1 Double Integrals 1079

EXERCISES 15.1

Finding Regions of Integration and
Double Integrals
In Exercises 1–10, sketch the region of integration and evaluate the
integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–16, integrate ƒ over the given region.

11. Quadrilateral over the region in the first quad-
rant bounded by the lines 

12. Square over the square 

13. Triangle over the triangular region with ver-
tices (0, 0), (1, 0), and (0, 1)

14. Rectangle over the rectangle 

15. Triangle over the triangular region cut
from the first quadrant of the u -plane by the line 

16. Curved region over the region in the first
quadrant of the st-plane that lies above the curve from

to 

Each of Exercises 17–20 gives an integral over a region in a Cartesian
coordinate plane. Sketch the region and evaluate the integral.

17.

18.

19.

20.

Reversing the Order of Integration
In Exercises 21–30, sketch the region of integration and write an
equivalent double integral with the order of integration reversed.
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Evaluating Double Integrals
In Exercises 31–40, sketch the region of integration, reverse the order
of integration, and evaluate the integral.

31. 32.

33. 34.

35. 36.

37.

38.

39. Square region where R is the region
bounded by the square  

40. Triangular region where R is the region bounded 
by the lines and 

Volume Beneath a Surface 
41. Find the volume of the region bounded by the paraboloid

and below by the triangle enclosed by the lines
and in the xy-plane.

42. Find the volume of the solid that is bounded above by the cylinder
and below by the region enclosed by the parabola

and the line in the xy-plane.

43. Find the volume of the solid whose base is the region in the xy-
plane that is bounded by the parabola and the line

while the top of the solid is bounded by the plane

44. Find the volume of the solid in the first octant bounded by the
coordinate planes, the cylinder and the plane
z + y = 3.
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y = 3x,
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EXERCISES 15.1

Finding Regions of Integration and
Double Integrals
In Exercises 1–10, sketch the region of integration and evaluate the
integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–16, integrate ƒ over the given region.

11. Quadrilateral over the region in the first quad-
rant bounded by the lines 

12. Square over the square 

13. Triangle over the triangular region with ver-
tices (0, 0), (1, 0), and (0, 1)

14. Rectangle over the rectangle 

15. Triangle over the triangular region cut
from the first quadrant of the u -plane by the line 

16. Curved region over the region in the first
quadrant of the st-plane that lies above the curve from

to 

Each of Exercises 17–20 gives an integral over a region in a Cartesian
coordinate plane. Sketch the region and evaluate the integral.

17.

18.

19.

20.

Reversing the Order of Integration
In Exercises 21–30, sketch the region of integration and write an
equivalent double integral with the order of integration reversed.
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23. 24.

25. 26.

27. 28.

29. 30.

Evaluating Double Integrals
In Exercises 31–40, sketch the region of integration, reverse the order
of integration, and evaluate the integral.

31. 32.

33. 34.

35. 36.

37.

38.

39. Square region where R is the region
bounded by the square  

40. Triangular region where R is the region bounded 
by the lines and 

Volume Beneath a Surface 
41. Find the volume of the region bounded by the paraboloid

and below by the triangle enclosed by the lines
and in the xy-plane.

42. Find the volume of the solid that is bounded above by the cylinder
and below by the region enclosed by the parabola

and the line in the xy-plane.

43. Find the volume of the solid whose base is the region in the xy-
plane that is bounded by the parabola and the line

while the top of the solid is bounded by the plane

44. Find the volume of the solid in the first octant bounded by the
coordinate planes, the cylinder and the plane
z + y = 3.

x2 + y2 = 4,

z = x + 4.
y = 3x,

y = 4 - x2

y = xy = 2 - x2
z = x2

x + y = 2y = x, x = 0,
z = x2 + y2

z = ƒsx, yd

x + y = 2y = x, y = 2x,
4R  xy dA

ƒ x ƒ + ƒ y ƒ = 1
4R s y - 2x2d dA
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EXERCISES 15.1

Finding Regions of Integration and
Double Integrals
In Exercises 1–10, sketch the region of integration and evaluate the
integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–16, integrate ƒ over the given region.

11. Quadrilateral over the region in the first quad-
rant bounded by the lines 

12. Square over the square 

13. Triangle over the triangular region with ver-
tices (0, 0), (1, 0), and (0, 1)

14. Rectangle over the rectangle 

15. Triangle over the triangular region cut
from the first quadrant of the u -plane by the line 

16. Curved region over the region in the first
quadrant of the st-plane that lies above the curve from

to 

Each of Exercises 17–20 gives an integral over a region in a Cartesian
coordinate plane. Sketch the region and evaluate the integral.

17.

18.

19.

20.

Reversing the Order of Integration
In Exercises 21–30, sketch the region of integration and write an
equivalent double integral with the order of integration reversed.
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Evaluating Double Integrals
In Exercises 31–40, sketch the region of integration, reverse the order
of integration, and evaluate the integral.
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38.

39. Square region where R is the region
bounded by the square  

40. Triangular region where R is the region bounded 
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Volume Beneath a Surface 
41. Find the volume of the region bounded by the paraboloid

and below by the triangle enclosed by the lines
and in the xy-plane.

42. Find the volume of the solid that is bounded above by the cylinder
and below by the region enclosed by the parabola

and the line in the xy-plane.

43. Find the volume of the solid whose base is the region in the xy-
plane that is bounded by the parabola and the line

while the top of the solid is bounded by the plane

44. Find the volume of the solid in the first octant bounded by the
coordinate planes, the cylinder and the plane
z + y = 3.

x2 + y2 = 4,

z = x + 4.
y = 3x,

y = 4 - x2

y = xy = 2 - x2
z = x2

x + y = 2y = x, x = 0,
z = x2 + y2

z = ƒsx, yd

x + y = 2y = x, y = 2x,
4R  xy dA

ƒ x ƒ + ƒ y ƒ = 1
4R s y - 2x2d dA

L
8

0
 L

2

23 x
 

dy dx

y4 + 1

L
1>16

0
 L

1>2
y1>4  cos s16px5d dx dy

L
3

0
 L

1

2x>3  ey3
 dy dxL

22ln 3

0
 L
2ln 3

y>2  ex2
 dx dy

L
2

0
 L

4-x2

0
 

xe2y

4 - y
 dy dxL

1

0
 L

1

y
 x2e xy dx dy

L
2

0
 L

2

x
2y2 sin xy dy dxL

p

0
 L
p

x
 
sin y

y  dy dx

L
2

0
 L
24-x2

-24-x2
 6x dy dxL

1

0
 L
21-y2

-21-y2
 3y dx dy

L
2

0
 L

4-y2

0
 y dx dyL

3>2
0

 L
9-4x2

0
16x dy dx

L
ln 2

0
 L

2

ex
 dx dyL

1

0
 L

ex

1
 dy dx

L
1

0
 L

1-x2

1-x
 dy dxL

1

0
 L
2y

y
 dx dy

L
2

0
 L

0

y-2
 dx dyL

1

0
 L

4-2x

2
 dy dx

4100 AWL/Thomas_ch15p1067-1142  8/25/04  2:57 PM  Page 1079

Copyright © 2005 Pearson Education, Inc., publishing as Pearson Addison-Wesley

2



1

1

2

x

y

y = 2− x

y = x

V =
∫ 1

0

∫ 2−x

x

(
x2 + y2

)
dx dy

3



V =
∫ 1

0

∫ 2−x

x

(
x2 + y2

)
dxdy

=
∫ 1

0

[
x2y +

y3

3

]2−x

x

dx

=
∫ 1

0

[
2x2 − 7x3

3
+

(2− x)3

3

]
dx

=
[
2x3

3
− 7x4

12
+

(2− x)4

12

]1

0

=
(

2
3
− 7

12
+

1
12

)
−

(
16
12

)
=

4
3

4



Problema 2.

Halle el volumen del solido que se forma en el primer 
octante, delimitado por los planos de coordenadas, el 

cilindro de ecuación 

y el plano de ecuacion

15.1 Double Integrals 1079

EXERCISES 15.1

Finding Regions of Integration and
Double Integrals
In Exercises 1–10, sketch the region of integration and evaluate the
integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–16, integrate ƒ over the given region.

11. Quadrilateral over the region in the first quad-
rant bounded by the lines 

12. Square over the square 

13. Triangle over the triangular region with ver-
tices (0, 0), (1, 0), and (0, 1)

14. Rectangle over the rectangle 

15. Triangle over the triangular region cut
from the first quadrant of the u -plane by the line 

16. Curved region over the region in the first
quadrant of the st-plane that lies above the curve from

to 

Each of Exercises 17–20 gives an integral over a region in a Cartesian
coordinate plane. Sketch the region and evaluate the integral.

17.

18.

19.

20.

Reversing the Order of Integration
In Exercises 21–30, sketch the region of integration and write an
equivalent double integral with the order of integration reversed.
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Evaluating Double Integrals
In Exercises 31–40, sketch the region of integration, reverse the order
of integration, and evaluate the integral.
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EXERCISES 15.1

Finding Regions of Integration and
Double Integrals
In Exercises 1–10, sketch the region of integration and evaluate the
integral.
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3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–16, integrate ƒ over the given region.

11. Quadrilateral over the region in the first quad-
rant bounded by the lines 

12. Square over the square 

13. Triangle over the triangular region with ver-
tices (0, 0), (1, 0), and (0, 1)

14. Rectangle over the rectangle 

15. Triangle over the triangular region cut
from the first quadrant of the u -plane by the line 

16. Curved region over the region in the first
quadrant of the st-plane that lies above the curve from

to 

Each of Exercises 17–20 gives an integral over a region in a Cartesian
coordinate plane. Sketch the region and evaluate the integral.

17.

18.

19.

20.

Reversing the Order of Integration
In Exercises 21–30, sketch the region of integration and write an
equivalent double integral with the order of integration reversed.
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0
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sx2y - 2xyd dy dxL

3

0
 L

2

0
s4 - y2ddy dx

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

Evaluating Double Integrals
In Exercises 31–40, sketch the region of integration, reverse the order
of integration, and evaluate the integral.

31. 32.

33. 34.

35. 36.

37.

38.

39. Square region where R is the region
bounded by the square  

40. Triangular region where R is the region bounded 
by the lines and 

Volume Beneath a Surface 
41. Find the volume of the region bounded by the paraboloid

and below by the triangle enclosed by the lines
and in the xy-plane.

42. Find the volume of the solid that is bounded above by the cylinder
and below by the region enclosed by the parabola

and the line in the xy-plane.

43. Find the volume of the solid whose base is the region in the xy-
plane that is bounded by the parabola and the line

while the top of the solid is bounded by the plane

44. Find the volume of the solid in the first octant bounded by the
coordinate planes, the cylinder and the plane
z + y = 3.

x2 + y2 = 4,

z = x + 4.
y = 3x,

y = 4 - x2

y = xy = 2 - x2
z = x2

x + y = 2y = x, x = 0,
z = x2 + y2

z = ƒsx, yd

x + y = 2y = x, y = 2x,
4R  xy dA

ƒ x ƒ + ƒ y ƒ = 1
4R s y - 2x2d dA
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L
3

0
 L

1

2x>3  ey3
 dy dxL

22ln 3

0
 L
2ln 3

y>2  ex2
 dx dy
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0
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x
 
sin y

y  dy dx

L
2

0
 L
24-x2

-24-x2
 6x dy dxL

1

0
 L
21-y2

-21-y2
 3y dx dy

L
2

0
 L
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0
 y dx dyL

3>2
0

 L
9-4x2

0
16x dy dx

L
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0
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 dx dyL

1
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1
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V =
∫ 2

0

∫ √
4−x2

0
(3− y) dx dy

=
∫ 2

0

[
3y − y2

2

]√4−x2

0

dx

=
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[
3
√
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2
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=
[
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x

√
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(x
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6
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0

=
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8
6

=
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Problema 3.

Halle el volumen del solido formado por el corte del 
primer octante por el cilindro                                 
y el plano  

45. Find the volume of the solid in the first octant bounded by the
coordinate planes, the plane and the parabolic cylinder

46. Find the volume of the solid cut from the first octant by the
surface 

47. Find the volume of the wedge cut from the first octant by the
cylinder and the plane 

48. Find the volume of the solid cut from the square column
by the planes and 

49. Find the volume of the solid that is bounded on the front and back
by the planes and on the sides by the cylinders

and above and below by the planes and

50. Find the volume of the solid bounded on the front and back by
the planes on the sides by the cylinders 
above by the cylinder and below by the xy-plane.

Integrals over Unbounded Regions
Improper double integrals can often be computed similarly to im-
proper integrals of one variable. The first iteration of the following
improper integrals is conducted just as if they were proper integrals.
One then evaluates an improper integral of a single variable by taking
appropriate limits, as in Section 8.8. Evaluate the improper integrals
in Exercises 51–54 as iterated integrals.

51. 52.

53.

54.

Approximating Double Integrals
In Exercises 55 and 56, approximate the double integral of ƒ(x, y) over
the region R partitioned by the given vertical lines and horizon-
tal lines In each subrectangle, use as indicated for your
approximation.

55. over the region R bounded above by the semicir-
cle and below by the x-axis, using the partition

0, 1 4, 1 2, 1 and 1 2, 1 with the
lower left corner in the kth subrectangle (provided the subrectan-
gle lies within R)

56. over the region R inside the circle
using the partition 3 2, 2, 5 2,

3 and 5 2, 3, 7 2, 4 with the center (centroid) in
the kth subrectangle (provided the subrectangle lies within R)

sxk, ykd>>y = 2,
>>x = 1 ,sx - 2d2 + s y - 3d2 = 1

ƒsx, yd = x + 2y

sxk, ykd>y = 0 ,>>x = -1, -1>2 ,
y = 11 - x 2

ƒsx, yd = x + y

6
R

 ƒsx, yd dA L an
k=1

 ƒsxk, ykd ¢Ak

sxk, ykdy = c.
x = a

L
q

0
 L

q

0
 xe-sx+2yd dx dy

L
q

-q
  L

q

-q
 

1
sx2 + 1ds y2 + 1d

 dx dy

L
1

-1
  L

1>21-x2

-1>21-x2
 s2y + 1ddy dxL

q

1
 L

1

e-x
  

1
x3y

 dy dx

z = 1 + y2,
y = ;sec x ,x = ;p>3,

z = 0.
z = x + 1y = ;1>x,

x = 1,x = 2

3x + z = 3.z = 0ƒ x ƒ + ƒ y ƒ … 1

x + y = 2.z = 12 - 3y2

z = 4 - x2 - y.

z = 4 - y2.
x = 3,

Theory and Examples
57. Circular sector Integrate over the smaller

sector cut from the disk by the rays and

58. Unbounded region Integrate 
over the infinite rectangle 

59. Noncircular cylinder A solid right (noncircular) cylinder has
its base R in the xy-plane and is bounded above by the paraboloid

The cylinder’s volume is

Sketch the base region R and express the cylinder’s volume as a
single iterated integral with the order of integration reversed.
Then evaluate the integral to find the volume.

60. Converting to a double integral Evaluate the integral

(Hint: Write the integrand as an integral.)

61. Maximizing a double integral What region R in the xy-plane
maximizes the value of

Give reasons for your answer.

62. Minimizing a double integral What region R in the xy-plane
minimizes the value of

Give reasons for your answer.

63. Is it possible to evaluate the integral of a continuous function ƒ(x, y)
over a rectangular region in the xy-plane and get different answers
depending on the order of integration? Give reasons for your
answer.

64. How would you evaluate the double integral of a continuous func-
tion ƒ(x, y) over the region R in the xy-plane enclosed by the triangle
with vertices (0, 1), (2, 0), and (1, 2)? Give reasons for your answer.

65. Unbounded region Prove that

66. Improper double integral Evaluate the improper integral

L
1

0
 L

3

0
 

x2

s y - 1d2>3 dy dx.

 = 4 aLq

0
 e-x2

 dxb2

.

 L
q

-q
 L

q

-q
 e-x 2-y2

 dx dy = lim
b:q 

 L
b

-b
  L

b

-b
 e-x2-y2

 dx dy

6
R

sx2 + y2 - 9d dA?

6
R

s4 - x2 - 2y2d dA?

L
2

0
stan-1px - tan-1 xd dx.

V = L
1

0
 L

y

0
sx2 + y2d dx dy + L

2

1
 L

2-y

0
sx2 + y2d dx dy.

z = x2 + y2 .

2 … x 6 q , 0 … y … 2.
ƒsx, yd = 1>[sx2 - xdsy - 1d2>3]u = p>2.

u = p>6x2 + y2 … 4
ƒsx, yd = 24 - x2
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45. Find the volume of the solid in the first octant bounded by the
coordinate planes, the plane and the parabolic cylinder

46. Find the volume of the solid cut from the first octant by the
surface 

47. Find the volume of the wedge cut from the first octant by the
cylinder and the plane 

48. Find the volume of the solid cut from the square column
by the planes and 

49. Find the volume of the solid that is bounded on the front and back
by the planes and on the sides by the cylinders

and above and below by the planes and

50. Find the volume of the solid bounded on the front and back by
the planes on the sides by the cylinders 
above by the cylinder and below by the xy-plane.

Integrals over Unbounded Regions
Improper double integrals can often be computed similarly to im-
proper integrals of one variable. The first iteration of the following
improper integrals is conducted just as if they were proper integrals.
One then evaluates an improper integral of a single variable by taking
appropriate limits, as in Section 8.8. Evaluate the improper integrals
in Exercises 51–54 as iterated integrals.

51. 52.

53.

54.

Approximating Double Integrals
In Exercises 55 and 56, approximate the double integral of ƒ(x, y) over
the region R partitioned by the given vertical lines and horizon-
tal lines In each subrectangle, use as indicated for your
approximation.

55. over the region R bounded above by the semicir-
cle and below by the x-axis, using the partition

0, 1 4, 1 2, 1 and 1 2, 1 with the
lower left corner in the kth subrectangle (provided the subrectan-
gle lies within R)

56. over the region R inside the circle
using the partition 3 2, 2, 5 2,

3 and 5 2, 3, 7 2, 4 with the center (centroid) in
the kth subrectangle (provided the subrectangle lies within R)

sxk, ykd>>y = 2,
>>x = 1 ,sx - 2d2 + s y - 3d2 = 1

ƒsx, yd = x + 2y

sxk, ykd>y = 0 ,>>x = -1, -1>2 ,
y = 11 - x 2

ƒsx, yd = x + y

6
R

 ƒsx, yd dA L an
k=1

 ƒsxk, ykd ¢Ak

sxk, ykdy = c.
x = a

L
q

0
 L

q

0
 xe-sx+2yd dx dy

L
q

-q
  L

q

-q
 

1
sx2 + 1ds y2 + 1d

 dx dy

L
1

-1
  L

1>21-x2

-1>21-x2
 s2y + 1ddy dxL

q

1
 L

1

e-x
  

1
x3y

 dy dx

z = 1 + y2,
y = ;sec x ,x = ;p>3,

z = 0.
z = x + 1y = ;1>x,

x = 1,x = 2

3x + z = 3.z = 0ƒ x ƒ + ƒ y ƒ … 1

x + y = 2.z = 12 - 3y2

z = 4 - x2 - y.

z = 4 - y2.
x = 3,

Theory and Examples
57. Circular sector Integrate over the smaller

sector cut from the disk by the rays and

58. Unbounded region Integrate 
over the infinite rectangle 

59. Noncircular cylinder A solid right (noncircular) cylinder has
its base R in the xy-plane and is bounded above by the paraboloid

The cylinder’s volume is

Sketch the base region R and express the cylinder’s volume as a
single iterated integral with the order of integration reversed.
Then evaluate the integral to find the volume.

60. Converting to a double integral Evaluate the integral

(Hint: Write the integrand as an integral.)

61. Maximizing a double integral What region R in the xy-plane
maximizes the value of

Give reasons for your answer.

62. Minimizing a double integral What region R in the xy-plane
minimizes the value of

Give reasons for your answer.

63. Is it possible to evaluate the integral of a continuous function ƒ(x, y)
over a rectangular region in the xy-plane and get different answers
depending on the order of integration? Give reasons for your
answer.

64. How would you evaluate the double integral of a continuous func-
tion ƒ(x, y) over the region R in the xy-plane enclosed by the triangle
with vertices (0, 1), (2, 0), and (1, 2)? Give reasons for your answer.

65. Unbounded region Prove that

66. Improper double integral Evaluate the improper integral

L
1

0
 L

3

0
 

x2

s y - 1d2>3 dy dx.

 = 4 aLq

0
 e-x2

 dxb2

.

 L
q

-q
 L

q

-q
 e-x 2-y2

 dx dy = lim
b:q 

 L
b

-b
  L

b

-b
 e-x2-y2

 dx dy

6
R

sx2 + y2 - 9d dA?

6
R

s4 - x2 - 2y2d dA?

L
2

0
stan-1px - tan-1 xd dx.

V = L
1

0
 L

y

0
sx2 + y2d dx dy + L

2

1
 L

2-y

0
sx2 + y2d dx dy.

z = x2 + y2 .

2 … x 6 q , 0 … y … 2.
ƒsx, yd = 1>[sx2 - xdsy - 1d2>3]u = p>2.

u = p>6x2 + y2 … 4
ƒsx, yd = 24 - x2
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V =
∫ 2

0

∫ 2−x

0

[
12− 3y2

]
dy dx

=
∫ 2

0

[
12y − y3

]2−x

0
dx

=
∫ 2

0

[
24− 12x− (2− x)3

]
dx

=
[
24− 6x2 − (2− x)4

4

]2

0

= 20
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Problema 4.

Un cilindro recto de base no circular, tiene su base en una 
región R del plano OXY delimitado por arriba por el 
paraboloide de ecuación

45. Find the volume of the solid in the first octant bounded by the
coordinate planes, the plane and the parabolic cylinder

46. Find the volume of the solid cut from the first octant by the
surface 

47. Find the volume of the wedge cut from the first octant by the
cylinder and the plane 

48. Find the volume of the solid cut from the square column
by the planes and 

49. Find the volume of the solid that is bounded on the front and back
by the planes and on the sides by the cylinders

and above and below by the planes and

50. Find the volume of the solid bounded on the front and back by
the planes on the sides by the cylinders 
above by the cylinder and below by the xy-plane.

Integrals over Unbounded Regions
Improper double integrals can often be computed similarly to im-
proper integrals of one variable. The first iteration of the following
improper integrals is conducted just as if they were proper integrals.
One then evaluates an improper integral of a single variable by taking
appropriate limits, as in Section 8.8. Evaluate the improper integrals
in Exercises 51–54 as iterated integrals.

51. 52.

53.

54.

Approximating Double Integrals
In Exercises 55 and 56, approximate the double integral of ƒ(x, y) over
the region R partitioned by the given vertical lines and horizon-
tal lines In each subrectangle, use as indicated for your
approximation.

55. over the region R bounded above by the semicir-
cle and below by the x-axis, using the partition

0, 1 4, 1 2, 1 and 1 2, 1 with the
lower left corner in the kth subrectangle (provided the subrectan-
gle lies within R)

56. over the region R inside the circle
using the partition 3 2, 2, 5 2,

3 and 5 2, 3, 7 2, 4 with the center (centroid) in
the kth subrectangle (provided the subrectangle lies within R)

sxk, ykd>>y = 2,
>>x = 1 ,sx - 2d2 + s y - 3d2 = 1

ƒsx, yd = x + 2y

sxk, ykd>y = 0 ,>>x = -1, -1>2 ,
y = 11 - x 2

ƒsx, yd = x + y

6
R

 ƒsx, yd dA L an
k=1

 ƒsxk, ykd ¢Ak

sxk, ykdy = c.
x = a

L
q

0
 L

q

0
 xe-sx+2yd dx dy

L
q

-q
  L

q

-q
 

1
sx2 + 1ds y2 + 1d

 dx dy

L
1

-1
  L

1>21-x2

-1>21-x2
 s2y + 1ddy dxL

q

1
 L

1

e-x
  

1
x3y

 dy dx

z = 1 + y2,
y = ;sec x ,x = ;p>3,

z = 0.
z = x + 1y = ;1>x,

x = 1,x = 2

3x + z = 3.z = 0ƒ x ƒ + ƒ y ƒ … 1

x + y = 2.z = 12 - 3y2

z = 4 - x2 - y.

z = 4 - y2.
x = 3,

Theory and Examples
57. Circular sector Integrate over the smaller

sector cut from the disk by the rays and

58. Unbounded region Integrate 
over the infinite rectangle 

59. Noncircular cylinder A solid right (noncircular) cylinder has
its base R in the xy-plane and is bounded above by the paraboloid

The cylinder’s volume is

Sketch the base region R and express the cylinder’s volume as a
single iterated integral with the order of integration reversed.
Then evaluate the integral to find the volume.

60. Converting to a double integral Evaluate the integral

(Hint: Write the integrand as an integral.)

61. Maximizing a double integral What region R in the xy-plane
maximizes the value of

Give reasons for your answer.

62. Minimizing a double integral What region R in the xy-plane
minimizes the value of

Give reasons for your answer.

63. Is it possible to evaluate the integral of a continuous function ƒ(x, y)
over a rectangular region in the xy-plane and get different answers
depending on the order of integration? Give reasons for your
answer.

64. How would you evaluate the double integral of a continuous func-
tion ƒ(x, y) over the region R in the xy-plane enclosed by the triangle
with vertices (0, 1), (2, 0), and (1, 2)? Give reasons for your answer.

65. Unbounded region Prove that

66. Improper double integral Evaluate the improper integral

L
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0
 L

3

0
 

x2

s y - 1d2>3 dy dx.

 = 4 aLq

0
 e-x2

 dxb2

.

 L
q

-q
 L
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 e-x 2-y2

 dx dy = lim
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 L
b
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b
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 e-x2-y2

 dx dy

6
R

sx2 + y2 - 9d dA?

6
R

s4 - x2 - 2y2d dA?

L
2

0
stan-1px - tan-1 xd dx.

V = L
1

0
 L

y

0
sx2 + y2d dx dy + L

2

1
 L

2-y

0
sx2 + y2d dx dy.

z = x2 + y2 .

2 … x 6 q , 0 … y … 2.
ƒsx, yd = 1>[sx2 - xdsy - 1d2>3]u = p>2.

u = p>6x2 + y2 … 4
ƒsx, yd = 24 - x2
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El volumen del cilindro esta dado por 

45. Find the volume of the solid in the first octant bounded by the
coordinate planes, the plane and the parabolic cylinder

46. Find the volume of the solid cut from the first octant by the
surface 

47. Find the volume of the wedge cut from the first octant by the
cylinder and the plane 

48. Find the volume of the solid cut from the square column
by the planes and 

49. Find the volume of the solid that is bounded on the front and back
by the planes and on the sides by the cylinders

and above and below by the planes and

50. Find the volume of the solid bounded on the front and back by
the planes on the sides by the cylinders 
above by the cylinder and below by the xy-plane.

Integrals over Unbounded Regions
Improper double integrals can often be computed similarly to im-
proper integrals of one variable. The first iteration of the following
improper integrals is conducted just as if they were proper integrals.
One then evaluates an improper integral of a single variable by taking
appropriate limits, as in Section 8.8. Evaluate the improper integrals
in Exercises 51–54 as iterated integrals.

51. 52.

53.

54.

Approximating Double Integrals
In Exercises 55 and 56, approximate the double integral of ƒ(x, y) over
the region R partitioned by the given vertical lines and horizon-
tal lines In each subrectangle, use as indicated for your
approximation.

55. over the region R bounded above by the semicir-
cle and below by the x-axis, using the partition

0, 1 4, 1 2, 1 and 1 2, 1 with the
lower left corner in the kth subrectangle (provided the subrectan-
gle lies within R)

56. over the region R inside the circle
using the partition 3 2, 2, 5 2,

3 and 5 2, 3, 7 2, 4 with the center (centroid) in
the kth subrectangle (provided the subrectangle lies within R)

sxk, ykd>>y = 2,
>>x = 1 ,sx - 2d2 + s y - 3d2 = 1

ƒsx, yd = x + 2y

sxk, ykd>y = 0 ,>>x = -1, -1>2 ,
y = 11 - x 2

ƒsx, yd = x + y

6
R

 ƒsx, yd dA L an
k=1

 ƒsxk, ykd ¢Ak

sxk, ykdy = c.
x = a

L
q

0
 L

q

0
 xe-sx+2yd dx dy

L
q

-q
  L

q

-q
 

1
sx2 + 1ds y2 + 1d

 dx dy

L
1

-1
  L

1>21-x2

-1>21-x2
 s2y + 1ddy dxL

q

1
 L

1

e-x
  

1
x3y

 dy dx

z = 1 + y2,
y = ;sec x ,x = ;p>3,

z = 0.
z = x + 1y = ;1>x,

x = 1,x = 2

3x + z = 3.z = 0ƒ x ƒ + ƒ y ƒ … 1

x + y = 2.z = 12 - 3y2

z = 4 - x2 - y.

z = 4 - y2.
x = 3,

Theory and Examples
57. Circular sector Integrate over the smaller

sector cut from the disk by the rays and

58. Unbounded region Integrate 
over the infinite rectangle 

59. Noncircular cylinder A solid right (noncircular) cylinder has
its base R in the xy-plane and is bounded above by the paraboloid

The cylinder’s volume is

Sketch the base region R and express the cylinder’s volume as a
single iterated integral with the order of integration reversed.
Then evaluate the integral to find the volume.

60. Converting to a double integral Evaluate the integral

(Hint: Write the integrand as an integral.)

61. Maximizing a double integral What region R in the xy-plane
maximizes the value of

Give reasons for your answer.

62. Minimizing a double integral What region R in the xy-plane
minimizes the value of

Give reasons for your answer.

63. Is it possible to evaluate the integral of a continuous function ƒ(x, y)
over a rectangular region in the xy-plane and get different answers
depending on the order of integration? Give reasons for your
answer.

64. How would you evaluate the double integral of a continuous func-
tion ƒ(x, y) over the region R in the xy-plane enclosed by the triangle
with vertices (0, 1), (2, 0), and (1, 2)? Give reasons for your answer.

65. Unbounded region Prove that

66. Improper double integral Evaluate the improper integral
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6
R

sx2 + y2 - 9d dA?

6
R
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L
2

0
stan-1px - tan-1 xd dx.

V = L
1

0
 L

y

0
sx2 + y2d dx dy + L

2

1
 L

2-y

0
sx2 + y2d dx dy.

z = x2 + y2 .

2 … x 6 q , 0 … y … 2.
ƒsx, yd = 1>[sx2 - xdsy - 1d2>3]u = p>2.

u = p>6x2 + y2 … 4
ƒsx, yd = 24 - x2
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Dibuje la región base (R) y exprese el volumen como 
una sola integral, haciendo cambio de orden de 
integración. Finalmente calcule el volumen.

15-01-59
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1

1

2

x

y

y = 2− x

y = x

45. Find the volume of the solid in the first octant bounded by the
coordinate planes, the plane and the parabolic cylinder

46. Find the volume of the solid cut from the first octant by the
surface 

47. Find the volume of the wedge cut from the first octant by the
cylinder and the plane 

48. Find the volume of the solid cut from the square column
by the planes and 

49. Find the volume of the solid that is bounded on the front and back
by the planes and on the sides by the cylinders

and above and below by the planes and

50. Find the volume of the solid bounded on the front and back by
the planes on the sides by the cylinders 
above by the cylinder and below by the xy-plane.

Integrals over Unbounded Regions
Improper double integrals can often be computed similarly to im-
proper integrals of one variable. The first iteration of the following
improper integrals is conducted just as if they were proper integrals.
One then evaluates an improper integral of a single variable by taking
appropriate limits, as in Section 8.8. Evaluate the improper integrals
in Exercises 51–54 as iterated integrals.

51. 52.

53.

54.

Approximating Double Integrals
In Exercises 55 and 56, approximate the double integral of ƒ(x, y) over
the region R partitioned by the given vertical lines and horizon-
tal lines In each subrectangle, use as indicated for your
approximation.

55. over the region R bounded above by the semicir-
cle and below by the x-axis, using the partition

0, 1 4, 1 2, 1 and 1 2, 1 with the
lower left corner in the kth subrectangle (provided the subrectan-
gle lies within R)

56. over the region R inside the circle
using the partition 3 2, 2, 5 2,

3 and 5 2, 3, 7 2, 4 with the center (centroid) in
the kth subrectangle (provided the subrectangle lies within R)

sxk, ykd>>y = 2,
>>x = 1 ,sx - 2d2 + s y - 3d2 = 1

ƒsx, yd = x + 2y

sxk, ykd>y = 0 ,>>x = -1, -1>2 ,
y = 11 - x 2

ƒsx, yd = x + y

6
R

 ƒsx, yd dA L an
k=1

 ƒsxk, ykd ¢Ak

sxk, ykdy = c.
x = a

L
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0
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1
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 dx dy
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 s2y + 1ddy dxL
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1
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1

e-x
  

1
x3y

 dy dx

z = 1 + y2,
y = ;sec x ,x = ;p>3,

z = 0.
z = x + 1y = ;1>x,

x = 1,x = 2

3x + z = 3.z = 0ƒ x ƒ + ƒ y ƒ … 1

x + y = 2.z = 12 - 3y2

z = 4 - x2 - y.

z = 4 - y2.
x = 3,

Theory and Examples
57. Circular sector Integrate over the smaller

sector cut from the disk by the rays and

58. Unbounded region Integrate 
over the infinite rectangle 

59. Noncircular cylinder A solid right (noncircular) cylinder has
its base R in the xy-plane and is bounded above by the paraboloid

The cylinder’s volume is

Sketch the base region R and express the cylinder’s volume as a
single iterated integral with the order of integration reversed.
Then evaluate the integral to find the volume.

60. Converting to a double integral Evaluate the integral

(Hint: Write the integrand as an integral.)

61. Maximizing a double integral What region R in the xy-plane
maximizes the value of

Give reasons for your answer.

62. Minimizing a double integral What region R in the xy-plane
minimizes the value of

Give reasons for your answer.

63. Is it possible to evaluate the integral of a continuous function ƒ(x, y)
over a rectangular region in the xy-plane and get different answers
depending on the order of integration? Give reasons for your
answer.

64. How would you evaluate the double integral of a continuous func-
tion ƒ(x, y) over the region R in the xy-plane enclosed by the triangle
with vertices (0, 1), (2, 0), and (1, 2)? Give reasons for your answer.

65. Unbounded region Prove that

66. Improper double integral Evaluate the improper integral
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R
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6
R

s4 - x2 - 2y2d dA?
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0
stan-1px - tan-1 xd dx.

V = L
1

0
 L

y

0
sx2 + y2d dx dy + L

2

1
 L

2-y

0
sx2 + y2d dx dy.

z = x2 + y2 .

2 … x 6 q , 0 … y … 2.
ƒsx, yd = 1>[sx2 - xdsy - 1d2>3]u = p>2.

u = p>6x2 + y2 … 4
ƒsx, yd = 24 - x2
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y = 2− x

y = x

45. Find the volume of the solid in the first octant bounded by the
coordinate planes, the plane and the parabolic cylinder

46. Find the volume of the solid cut from the first octant by the
surface 

47. Find the volume of the wedge cut from the first octant by the
cylinder and the plane 

48. Find the volume of the solid cut from the square column
by the planes and 

49. Find the volume of the solid that is bounded on the front and back
by the planes and on the sides by the cylinders

and above and below by the planes and

50. Find the volume of the solid bounded on the front and back by
the planes on the sides by the cylinders 
above by the cylinder and below by the xy-plane.

Integrals over Unbounded Regions
Improper double integrals can often be computed similarly to im-
proper integrals of one variable. The first iteration of the following
improper integrals is conducted just as if they were proper integrals.
One then evaluates an improper integral of a single variable by taking
appropriate limits, as in Section 8.8. Evaluate the improper integrals
in Exercises 51–54 as iterated integrals.

51. 52.

53.

54.

Approximating Double Integrals
In Exercises 55 and 56, approximate the double integral of ƒ(x, y) over
the region R partitioned by the given vertical lines and horizon-
tal lines In each subrectangle, use as indicated for your
approximation.

55. over the region R bounded above by the semicir-
cle and below by the x-axis, using the partition

0, 1 4, 1 2, 1 and 1 2, 1 with the
lower left corner in the kth subrectangle (provided the subrectan-
gle lies within R)

56. over the region R inside the circle
using the partition 3 2, 2, 5 2,

3 and 5 2, 3, 7 2, 4 with the center (centroid) in
the kth subrectangle (provided the subrectangle lies within R)

sxk, ykd>>y = 2,
>>x = 1 ,sx - 2d2 + s y - 3d2 = 1

ƒsx, yd = x + 2y

sxk, ykd>y = 0 ,>>x = -1, -1>2 ,
y = 11 - x 2

ƒsx, yd = x + y

6
R

 ƒsx, yd dA L an
k=1

 ƒsxk, ykd ¢Ak

sxk, ykdy = c.
x = a
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1
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 dy dx

z = 1 + y2,
y = ;sec x ,x = ;p>3,

z = 0.
z = x + 1y = ;1>x,

x = 1,x = 2

3x + z = 3.z = 0ƒ x ƒ + ƒ y ƒ … 1

x + y = 2.z = 12 - 3y2

z = 4 - x2 - y.

z = 4 - y2.
x = 3,

Theory and Examples
57. Circular sector Integrate over the smaller

sector cut from the disk by the rays and

58. Unbounded region Integrate 
over the infinite rectangle 

59. Noncircular cylinder A solid right (noncircular) cylinder has
its base R in the xy-plane and is bounded above by the paraboloid

The cylinder’s volume is

Sketch the base region R and express the cylinder’s volume as a
single iterated integral with the order of integration reversed.
Then evaluate the integral to find the volume.

60. Converting to a double integral Evaluate the integral

(Hint: Write the integrand as an integral.)

61. Maximizing a double integral What region R in the xy-plane
maximizes the value of

Give reasons for your answer.

62. Minimizing a double integral What region R in the xy-plane
minimizes the value of

Give reasons for your answer.

63. Is it possible to evaluate the integral of a continuous function ƒ(x, y)
over a rectangular region in the xy-plane and get different answers
depending on the order of integration? Give reasons for your
answer.

64. How would you evaluate the double integral of a continuous func-
tion ƒ(x, y) over the region R in the xy-plane enclosed by the triangle
with vertices (0, 1), (2, 0), and (1, 2)? Give reasons for your answer.

65. Unbounded region Prove that

66. Improper double integral Evaluate the improper integral
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0
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z = x2 + y2 .

2 … x 6 q , 0 … y … 2.
ƒsx, yd = 1>[sx2 - xdsy - 1d2>3]u = p>2.

u = p>6x2 + y2 … 4
ƒsx, yd = 24 - x2
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y = 2− x

y = x

45. Find the volume of the solid in the first octant bounded by the
coordinate planes, the plane and the parabolic cylinder

46. Find the volume of the solid cut from the first octant by the
surface 

47. Find the volume of the wedge cut from the first octant by the
cylinder and the plane 

48. Find the volume of the solid cut from the square column
by the planes and 

49. Find the volume of the solid that is bounded on the front and back
by the planes and on the sides by the cylinders

and above and below by the planes and

50. Find the volume of the solid bounded on the front and back by
the planes on the sides by the cylinders 
above by the cylinder and below by the xy-plane.

Integrals over Unbounded Regions
Improper double integrals can often be computed similarly to im-
proper integrals of one variable. The first iteration of the following
improper integrals is conducted just as if they were proper integrals.
One then evaluates an improper integral of a single variable by taking
appropriate limits, as in Section 8.8. Evaluate the improper integrals
in Exercises 51–54 as iterated integrals.

51. 52.

53.

54.

Approximating Double Integrals
In Exercises 55 and 56, approximate the double integral of ƒ(x, y) over
the region R partitioned by the given vertical lines and horizon-
tal lines In each subrectangle, use as indicated for your
approximation.

55. over the region R bounded above by the semicir-
cle and below by the x-axis, using the partition

0, 1 4, 1 2, 1 and 1 2, 1 with the
lower left corner in the kth subrectangle (provided the subrectan-
gle lies within R)

56. over the region R inside the circle
using the partition 3 2, 2, 5 2,

3 and 5 2, 3, 7 2, 4 with the center (centroid) in
the kth subrectangle (provided the subrectangle lies within R)

sxk, ykd>>y = 2,
>>x = 1 ,sx - 2d2 + s y - 3d2 = 1

ƒsx, yd = x + 2y

sxk, ykd>y = 0 ,>>x = -1, -1>2 ,
y = 11 - x 2

ƒsx, yd = x + y

6
R

 ƒsx, yd dA L an
k=1

 ƒsxk, ykd ¢Ak

sxk, ykdy = c.
x = a

L
q
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0
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-1>21-x2
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1
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1
x3y

 dy dx

z = 1 + y2,
y = ;sec x ,x = ;p>3,

z = 0.
z = x + 1y = ;1>x,

x = 1,x = 2

3x + z = 3.z = 0ƒ x ƒ + ƒ y ƒ … 1

x + y = 2.z = 12 - 3y2

z = 4 - x2 - y.

z = 4 - y2.
x = 3,

Theory and Examples
57. Circular sector Integrate over the smaller

sector cut from the disk by the rays and

58. Unbounded region Integrate 
over the infinite rectangle 

59. Noncircular cylinder A solid right (noncircular) cylinder has
its base R in the xy-plane and is bounded above by the paraboloid

The cylinder’s volume is

Sketch the base region R and express the cylinder’s volume as a
single iterated integral with the order of integration reversed.
Then evaluate the integral to find the volume.

60. Converting to a double integral Evaluate the integral

(Hint: Write the integrand as an integral.)

61. Maximizing a double integral What region R in the xy-plane
maximizes the value of

Give reasons for your answer.

62. Minimizing a double integral What region R in the xy-plane
minimizes the value of

Give reasons for your answer.

63. Is it possible to evaluate the integral of a continuous function ƒ(x, y)
over a rectangular region in the xy-plane and get different answers
depending on the order of integration? Give reasons for your
answer.

64. How would you evaluate the double integral of a continuous func-
tion ƒ(x, y) over the region R in the xy-plane enclosed by the triangle
with vertices (0, 1), (2, 0), and (1, 2)? Give reasons for your answer.

65. Unbounded region Prove that

66. Improper double integral Evaluate the improper integral
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0
sx2 + y2d dx dy.

z = x2 + y2 .

2 … x 6 q , 0 … y … 2.
ƒsx, yd = 1>[sx2 - xdsy - 1d2>3]u = p>2.

u = p>6x2 + y2 … 4
ƒsx, yd = 24 - x2
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y = 2− x

y = x

45. Find the volume of the solid in the first octant bounded by the
coordinate planes, the plane and the parabolic cylinder

46. Find the volume of the solid cut from the first octant by the
surface 

47. Find the volume of the wedge cut from the first octant by the
cylinder and the plane 

48. Find the volume of the solid cut from the square column
by the planes and 

49. Find the volume of the solid that is bounded on the front and back
by the planes and on the sides by the cylinders

and above and below by the planes and

50. Find the volume of the solid bounded on the front and back by
the planes on the sides by the cylinders 
above by the cylinder and below by the xy-plane.

Integrals over Unbounded Regions
Improper double integrals can often be computed similarly to im-
proper integrals of one variable. The first iteration of the following
improper integrals is conducted just as if they were proper integrals.
One then evaluates an improper integral of a single variable by taking
appropriate limits, as in Section 8.8. Evaluate the improper integrals
in Exercises 51–54 as iterated integrals.

51. 52.

53.

54.

Approximating Double Integrals
In Exercises 55 and 56, approximate the double integral of ƒ(x, y) over
the region R partitioned by the given vertical lines and horizon-
tal lines In each subrectangle, use as indicated for your
approximation.

55. over the region R bounded above by the semicir-
cle and below by the x-axis, using the partition

0, 1 4, 1 2, 1 and 1 2, 1 with the
lower left corner in the kth subrectangle (provided the subrectan-
gle lies within R)

56. over the region R inside the circle
using the partition 3 2, 2, 5 2,

3 and 5 2, 3, 7 2, 4 with the center (centroid) in
the kth subrectangle (provided the subrectangle lies within R)

sxk, ykd>>y = 2,
>>x = 1 ,sx - 2d2 + s y - 3d2 = 1

ƒsx, yd = x + 2y

sxk, ykd>y = 0 ,>>x = -1, -1>2 ,
y = 11 - x 2

ƒsx, yd = x + y

6
R

 ƒsx, yd dA L an
k=1

 ƒsxk, ykd ¢Ak

sxk, ykdy = c.
x = a
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1
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 dy dx

z = 1 + y2,
y = ;sec x ,x = ;p>3,

z = 0.
z = x + 1y = ;1>x,

x = 1,x = 2

3x + z = 3.z = 0ƒ x ƒ + ƒ y ƒ … 1

x + y = 2.z = 12 - 3y2

z = 4 - x2 - y.

z = 4 - y2.
x = 3,

Theory and Examples
57. Circular sector Integrate over the smaller

sector cut from the disk by the rays and

58. Unbounded region Integrate 
over the infinite rectangle 

59. Noncircular cylinder A solid right (noncircular) cylinder has
its base R in the xy-plane and is bounded above by the paraboloid

The cylinder’s volume is

Sketch the base region R and express the cylinder’s volume as a
single iterated integral with the order of integration reversed.
Then evaluate the integral to find the volume.

60. Converting to a double integral Evaluate the integral

(Hint: Write the integrand as an integral.)

61. Maximizing a double integral What region R in the xy-plane
maximizes the value of

Give reasons for your answer.

62. Minimizing a double integral What region R in the xy-plane
minimizes the value of

Give reasons for your answer.

63. Is it possible to evaluate the integral of a continuous function ƒ(x, y)
over a rectangular region in the xy-plane and get different answers
depending on the order of integration? Give reasons for your
answer.

64. How would you evaluate the double integral of a continuous func-
tion ƒ(x, y) over the region R in the xy-plane enclosed by the triangle
with vertices (0, 1), (2, 0), and (1, 2)? Give reasons for your answer.

65. Unbounded region Prove that

66. Improper double integral Evaluate the improper integral
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2 … x 6 q , 0 … y … 2.
ƒsx, yd = 1>[sx2 - xdsy - 1d2>3]u = p>2.

u = p>6x2 + y2 … 4
ƒsx, yd = 24 - x2
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45. Find the volume of the solid in the first octant bounded by the
coordinate planes, the plane and the parabolic cylinder

46. Find the volume of the solid cut from the first octant by the
surface 

47. Find the volume of the wedge cut from the first octant by the
cylinder and the plane 

48. Find the volume of the solid cut from the square column
by the planes and 

49. Find the volume of the solid that is bounded on the front and back
by the planes and on the sides by the cylinders

and above and below by the planes and

50. Find the volume of the solid bounded on the front and back by
the planes on the sides by the cylinders 
above by the cylinder and below by the xy-plane.

Integrals over Unbounded Regions
Improper double integrals can often be computed similarly to im-
proper integrals of one variable. The first iteration of the following
improper integrals is conducted just as if they were proper integrals.
One then evaluates an improper integral of a single variable by taking
appropriate limits, as in Section 8.8. Evaluate the improper integrals
in Exercises 51–54 as iterated integrals.

51. 52.

53.

54.

Approximating Double Integrals
In Exercises 55 and 56, approximate the double integral of ƒ(x, y) over
the region R partitioned by the given vertical lines and horizon-
tal lines In each subrectangle, use as indicated for your
approximation.

55. over the region R bounded above by the semicir-
cle and below by the x-axis, using the partition

0, 1 4, 1 2, 1 and 1 2, 1 with the
lower left corner in the kth subrectangle (provided the subrectan-
gle lies within R)

56. over the region R inside the circle
using the partition 3 2, 2, 5 2,

3 and 5 2, 3, 7 2, 4 with the center (centroid) in
the kth subrectangle (provided the subrectangle lies within R)

sxk, ykd>>y = 2,
>>x = 1 ,sx - 2d2 + s y - 3d2 = 1

ƒsx, yd = x + 2y

sxk, ykd>y = 0 ,>>x = -1, -1>2 ,
y = 11 - x 2

ƒsx, yd = x + y

6
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z = 1 + y2,
y = ;sec x ,x = ;p>3,

z = 0.
z = x + 1y = ;1>x,

x = 1,x = 2

3x + z = 3.z = 0ƒ x ƒ + ƒ y ƒ … 1

x + y = 2.z = 12 - 3y2

z = 4 - x2 - y.

z = 4 - y2.
x = 3,

Theory and Examples
57. Circular sector Integrate over the smaller

sector cut from the disk by the rays and

58. Unbounded region Integrate 
over the infinite rectangle 

59. Noncircular cylinder A solid right (noncircular) cylinder has
its base R in the xy-plane and is bounded above by the paraboloid

The cylinder’s volume is

Sketch the base region R and express the cylinder’s volume as a
single iterated integral with the order of integration reversed.
Then evaluate the integral to find the volume.

60. Converting to a double integral Evaluate the integral

(Hint: Write the integrand as an integral.)

61. Maximizing a double integral What region R in the xy-plane
maximizes the value of

Give reasons for your answer.

62. Minimizing a double integral What region R in the xy-plane
minimizes the value of

Give reasons for your answer.

63. Is it possible to evaluate the integral of a continuous function ƒ(x, y)
over a rectangular region in the xy-plane and get different answers
depending on the order of integration? Give reasons for your
answer.

64. How would you evaluate the double integral of a continuous func-
tion ƒ(x, y) over the region R in the xy-plane enclosed by the triangle
with vertices (0, 1), (2, 0), and (1, 2)? Give reasons for your answer.

65. Unbounded region Prove that

66. Improper double integral Evaluate the improper integral
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 L

q

-q
 e-x 2-y2

 dx dy = lim
b:q 

 L
b

-b
  L

b

-b
 e-x2-y2

 dx dy

6
R

sx2 + y2 - 9d dA?

6
R

s4 - x2 - 2y2d dA?

L
2

0
stan-1px - tan-1 xd dx.

V = L
1

0
 L

y

0
sx2 + y2d dx dy + L

2

1
 L

2-y

0
sx2 + y2d dx dy.

z = x2 + y2 .

2 … x 6 q , 0 … y … 2.
ƒsx, yd = 1>[sx2 - xdsy - 1d2>3]u = p>2.

u = p>6x2 + y2 … 4
ƒsx, yd = 24 - x2
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Ejercicio 1.

Calcular:

(r) 2π
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Ejercicio 2.

45. Find the volume of the solid in the first octant bounded by the
coordinate planes, the plane and the parabolic cylinder

46. Find the volume of the solid cut from the first octant by the
surface 

47. Find the volume of the wedge cut from the first octant by the
cylinder and the plane 

48. Find the volume of the solid cut from the square column
by the planes and 

49. Find the volume of the solid that is bounded on the front and back
by the planes and on the sides by the cylinders

and above and below by the planes and

50. Find the volume of the solid bounded on the front and back by
the planes on the sides by the cylinders 
above by the cylinder and below by the xy-plane.

Integrals over Unbounded Regions
Improper double integrals can often be computed similarly to im-
proper integrals of one variable. The first iteration of the following
improper integrals is conducted just as if they were proper integrals.
One then evaluates an improper integral of a single variable by taking
appropriate limits, as in Section 8.8. Evaluate the improper integrals
in Exercises 51–54 as iterated integrals.

51. 52.

53.

54.

Approximating Double Integrals
In Exercises 55 and 56, approximate the double integral of ƒ(x, y) over
the region R partitioned by the given vertical lines and horizon-
tal lines In each subrectangle, use as indicated for your
approximation.

55. over the region R bounded above by the semicir-
cle and below by the x-axis, using the partition

0, 1 4, 1 2, 1 and 1 2, 1 with the
lower left corner in the kth subrectangle (provided the subrectan-
gle lies within R)

56. over the region R inside the circle
using the partition 3 2, 2, 5 2,

3 and 5 2, 3, 7 2, 4 with the center (centroid) in
the kth subrectangle (provided the subrectangle lies within R)

sxk, ykd>>y = 2,
>>x = 1 ,sx - 2d2 + s y - 3d2 = 1

ƒsx, yd = x + 2y

sxk, ykd>y = 0 ,>>x = -1, -1>2 ,
y = 11 - x 2

ƒsx, yd = x + y

6
R

 ƒsx, yd dA L an
k=1

 ƒsxk, ykd ¢Ak

sxk, ykdy = c.
x = a

L
q

0
 L

q

0
 xe-sx+2yd dx dy

L
q

-q
  L

q

-q
 

1
sx2 + 1ds y2 + 1d

 dx dy

L
1

-1
  L

1>21-x2

-1>21-x2
 s2y + 1ddy dxL

q

1
 L

1

e-x
  

1
x3y

 dy dx

z = 1 + y2,
y = ;sec x ,x = ;p>3,

z = 0.
z = x + 1y = ;1>x,

x = 1,x = 2

3x + z = 3.z = 0ƒ x ƒ + ƒ y ƒ … 1

x + y = 2.z = 12 - 3y2

z = 4 - x2 - y.

z = 4 - y2.
x = 3,

Theory and Examples
57. Circular sector Integrate over the smaller

sector cut from the disk by the rays and

58. Unbounded region Integrate 
over the infinite rectangle 

59. Noncircular cylinder A solid right (noncircular) cylinder has
its base R in the xy-plane and is bounded above by the paraboloid

The cylinder’s volume is

Sketch the base region R and express the cylinder’s volume as a
single iterated integral with the order of integration reversed.
Then evaluate the integral to find the volume.

60. Converting to a double integral Evaluate the integral

(Hint: Write the integrand as an integral.)

61. Maximizing a double integral What region R in the xy-plane
maximizes the value of

Give reasons for your answer.

62. Minimizing a double integral What region R in the xy-plane
minimizes the value of

Give reasons for your answer.

63. Is it possible to evaluate the integral of a continuous function ƒ(x, y)
over a rectangular region in the xy-plane and get different answers
depending on the order of integration? Give reasons for your
answer.

64. How would you evaluate the double integral of a continuous func-
tion ƒ(x, y) over the region R in the xy-plane enclosed by the triangle
with vertices (0, 1), (2, 0), and (1, 2)? Give reasons for your answer.

65. Unbounded region Prove that

66. Improper double integral Evaluate the improper integral

L
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0
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3

0
 

x2

s y - 1d2>3 dy dx.

 = 4 aLq

0
 e-x2

 dxb2

.

 L
q

-q
 L

q

-q
 e-x 2-y2

 dx dy = lim
b:q 

 L
b

-b
  L

b

-b
 e-x2-y2

 dx dy

6
R

sx2 + y2 - 9d dA?

6
R

s4 - x2 - 2y2d dA?

L
2

0
stan-1px - tan-1 xd dx.

V = L
1

0
 L

y

0
sx2 + y2d dx dy + L

2

1
 L

2-y

0
sx2 + y2d dx dy.

z = x2 + y2 .

2 … x 6 q , 0 … y … 2.
ƒsx, yd = 1>[sx2 - xdsy - 1d2>3]u = p>2.

u = p>6x2 + y2 … 4
ƒsx, yd = 24 - x2
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Evaluar la integral:

(R)

948 Chapter 15 Multiple Integrals

55. f(x y) dA  f 0 f(0 0) f 0 f 0 f f f' '
R
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57. The ray  meets the circle x y 4 at the point 3 1   the ray is represented by the line y .) œ " œ ß Ê œ1

6
x

3
# # Š ‹È

È
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61. To maximize the integral, we want the domain to include all points where the integrand is positive and to
 exclude all points where the integrand is negative.  These criteria are met by the points (x y) such thatß

 4 x 2y 0 or x 2y 4, which is the ellipse x 2y 4 together with its interior.! !   " Ÿ " œ# # # # # #

62. To minimize the integral, we want the domain to include all points where the integrand is negative and to
 exclude all points where the integrand is positive.  These criteria are met by the points (x y) such thatß

 x y 9 0 or x y 9, which is the closed disk of radius 3 centered at the origin.# # # #" ! Ÿ " Ÿ

63. No, it is not possible  By Fubini's theorem, the two orders of integration must give the same result.
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Ejercicio 3.

Que región R del plano OXY maximiza la integral

45. Find the volume of the solid in the first octant bounded by the
coordinate planes, the plane and the parabolic cylinder

46. Find the volume of the solid cut from the first octant by the
surface 

47. Find the volume of the wedge cut from the first octant by the
cylinder and the plane 

48. Find the volume of the solid cut from the square column
by the planes and 

49. Find the volume of the solid that is bounded on the front and back
by the planes and on the sides by the cylinders

and above and below by the planes and

50. Find the volume of the solid bounded on the front and back by
the planes on the sides by the cylinders 
above by the cylinder and below by the xy-plane.

Integrals over Unbounded Regions
Improper double integrals can often be computed similarly to im-
proper integrals of one variable. The first iteration of the following
improper integrals is conducted just as if they were proper integrals.
One then evaluates an improper integral of a single variable by taking
appropriate limits, as in Section 8.8. Evaluate the improper integrals
in Exercises 51–54 as iterated integrals.

51. 52.

53.

54.

Approximating Double Integrals
In Exercises 55 and 56, approximate the double integral of ƒ(x, y) over
the region R partitioned by the given vertical lines and horizon-
tal lines In each subrectangle, use as indicated for your
approximation.

55. over the region R bounded above by the semicir-
cle and below by the x-axis, using the partition

0, 1 4, 1 2, 1 and 1 2, 1 with the
lower left corner in the kth subrectangle (provided the subrectan-
gle lies within R)

56. over the region R inside the circle
using the partition 3 2, 2, 5 2,

3 and 5 2, 3, 7 2, 4 with the center (centroid) in
the kth subrectangle (provided the subrectangle lies within R)

sxk, ykd>>y = 2,
>>x = 1 ,sx - 2d2 + s y - 3d2 = 1

ƒsx, yd = x + 2y

sxk, ykd>y = 0 ,>>x = -1, -1>2 ,
y = 11 - x 2

ƒsx, yd = x + y

6
R

 ƒsx, yd dA L an
k=1

 ƒsxk, ykd ¢Ak

sxk, ykdy = c.
x = a

L
q

0
 L

q

0
 xe-sx+2yd dx dy

L
q

-q
  L

q

-q
 

1
sx2 + 1ds y2 + 1d

 dx dy

L
1

-1
  L

1>21-x2

-1>21-x2
 s2y + 1ddy dxL

q

1
 L

1

e-x
  

1
x3y

 dy dx

z = 1 + y2,
y = ;sec x ,x = ;p>3,

z = 0.
z = x + 1y = ;1>x,

x = 1,x = 2

3x + z = 3.z = 0ƒ x ƒ + ƒ y ƒ … 1

x + y = 2.z = 12 - 3y2

z = 4 - x2 - y.

z = 4 - y2.
x = 3,

Theory and Examples
57. Circular sector Integrate over the smaller

sector cut from the disk by the rays and

58. Unbounded region Integrate 
over the infinite rectangle 

59. Noncircular cylinder A solid right (noncircular) cylinder has
its base R in the xy-plane and is bounded above by the paraboloid

The cylinder’s volume is

Sketch the base region R and express the cylinder’s volume as a
single iterated integral with the order of integration reversed.
Then evaluate the integral to find the volume.

60. Converting to a double integral Evaluate the integral

(Hint: Write the integrand as an integral.)

61. Maximizing a double integral What region R in the xy-plane
maximizes the value of

Give reasons for your answer.

62. Minimizing a double integral What region R in the xy-plane
minimizes the value of

Give reasons for your answer.

63. Is it possible to evaluate the integral of a continuous function ƒ(x, y)
over a rectangular region in the xy-plane and get different answers
depending on the order of integration? Give reasons for your
answer.

64. How would you evaluate the double integral of a continuous func-
tion ƒ(x, y) over the region R in the xy-plane enclosed by the triangle
with vertices (0, 1), (2, 0), and (1, 2)? Give reasons for your answer.

65. Unbounded region Prove that

66. Improper double integral Evaluate the improper integral
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0
stan-1px - tan-1 xd dx.
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y

0
sx2 + y2d dx dy + L
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1
 L

2-y

0
sx2 + y2d dx dy.

z = x2 + y2 .

2 … x 6 q , 0 … y … 2.
ƒsx, yd = 1>[sx2 - xdsy - 1d2>3]u = p>2.

u = p>6x2 + y2 … 4
ƒsx, yd = 24 - x2
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(R)  La región R es la elipse                       y su interior

948 Chapter 15 Multiple Integrals

55. f(x y) dA  f 0 f(0 0) f 0 f 0 f f f' '
R
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57. The ray  meets the circle x y 4 at the point 3 1   the ray is represented by the line y .) œ " œ ß Ê œ1
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61. To maximize the integral, we want the domain to include all points where the integrand is positive and to
 exclude all points where the integrand is negative.  These criteria are met by the points (x y) such thatß

 4 x 2y 0 or x 2y 4, which is the ellipse x 2y 4 together with its interior.! !   " Ÿ " œ# # # # # #

62. To minimize the integral, we want the domain to include all points where the integrand is negative and to
 exclude all points where the integrand is positive.  These criteria are met by the points (x y) such thatß

 x y 9 0 or x y 9, which is the closed disk of radius 3 centered at the origin.# # # #" ! Ÿ " Ÿ

63. No, it is not possible  By Fubini's theorem, the two orders of integration must give the same result.
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La masa 
total

Problema 4.

Encuentre el centro de masa de una plato delgada de 
densidad             delimitado por las lineas                 
y por la parábola                      en el primer cuadrante

15.2 Area, Moments, and Centers of Mass 1089

EXERCISES 15.2

Area by Double Integration
In Exercises 1–8, sketch the region bounded by the given lines and
curves. Then express the region’s area as an iterated double integral
and evaluate the integral.

1. The coordinate axes and the line 

2. The lines and 

3. The parabola and the line 

4. The parabola and the line 

5. The curve and the lines and 

6. The curves and and the line in the first
quadrant

7. The parabolas and 

8. The parabolas and 

Identifying the Region of Integration
The integrals and sums of integrals in Exercises 9–14 give the areas of
regions in the xy-plane. Sketch each region, label each bounding curve
with its equation, and give the coordinates of the points where the
curves intersect. Then find the area of the region.

9. 10.

11. 12.

13.

14.

Average Values
15. Find the average value of over

a. the rectangle 

b. the rectangle 

16. Which do you think will be larger, the average value of
over the square or the aver-

age value of ƒ over the quarter circle in the first
quadrant? Calculate them to find out.

x2 + y2 … 1
0 … x … 1, 0 … y … 1,ƒsx, yd = xy

0 … x … p, 0 … y … p>20 … x … p, 0 … y … p
ƒsx, yd = sin sx + yd

L
2

0
 L

0

x2-4
 dy dx + L

4

0
 L
2x

0
 dy dx

L
0

-1
 L

1-x

-2x
 dy dx + L

2

0
 L

1-x

-x>2  dy dx

L
2

-1
 L

y+2

y2
 dx dyL

p>4
0

 L
cos x

sin x
 dy dx

L
3

0
 L

xs2-xd

-x
 dy dxL

6

0
 L

2y

y2>3 dx dy

x = 2y2 - 2x = y2 - 1

x = 2y - y2x = y2

x = e,y = 2 ln xy = ln x

x = ln 2y = 0, x = 0,y = ex

y = -xx = y - y2

y = x + 2x = -y2

y = 4x = 0, y = 2x ,

x + y = 2

17. Find the average height of the paraboloid over the
square 

18. Find the average value of over the square

Constant Density
19. Finding center of mass Find a center of mass of a thin plate of

density bounded by the lines and the
parabola in the first quadrant.

20. Finding moments of inertia and radii of gyration Find the
moments of inertia and radii of gyration about the coordinate axes
of a thin rectangular plate of constant density bounded by the
lines and in the first quadrant.

21. Finding a centroid Find the centroid of the region in the first
quadrant bounded by the x-axis, the parabola and the line

22. Finding a centroid Find the centroid of the triangular region
cut from the first quadrant by the line 

23. Finding a centroid Find the centroid of the semicircular region
bounded by the x-axis and the curve 

24. Finding a centroid The area of the region in the first quadrant
bounded by the parabola and the line is
125 6 square units. Find the centroid.

25. Finding a centroid Find the centroid of the region cut from the
first quadrant by the circle 

26. Finding a centroid Find the centroid of the region between the
x-axis and the arch 

27. Finding moments of inertia Find the moment of inertia about
the x-axis of a thin plate of density bounded by the circle

Then use your result to find and for the plate.

28. Finding a moment of inertia Find the moment of inertia with
respect to the y-axis of a thin sheet of constant density 
bounded by the curve and the interval

of the x-axis.

29. The centroid of an infinite region Find the centroid of the
infinite region in the second quadrant enclosed by the coordinate
axes and the curve (Use improper integrals in the mass-
moment formulas.)

y = ex.

p … x … 2p
y = ssin2 xd>x2

d = 1

I0Iyx2 + y2 = 4.
d = 1

y = sin x, 0 … x … p.

x2 + y2 = a2.

> y = xy = 6x - x2

y = 21 - x2.

x + y = 3.

x + y = 4.
y2 = 2x,

y = 3x = 3
d

y = 2 - x2
x = 0, y = x,d = 3

ln 2 … x … 2 ln 2, ln 2 … y … 2 ln 2.
ƒsx, yd = 1>sxyd

0 … x … 2, 0 … y … 2.
z = x2 + y2
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15.2 Area, Moments, and Centers of Mass 1089

EXERCISES 15.2

Area by Double Integration
In Exercises 1–8, sketch the region bounded by the given lines and
curves. Then express the region’s area as an iterated double integral
and evaluate the integral.

1. The coordinate axes and the line 

2. The lines and 

3. The parabola and the line 

4. The parabola and the line 

5. The curve and the lines and 

6. The curves and and the line in the first
quadrant

7. The parabolas and 

8. The parabolas and 

Identifying the Region of Integration
The integrals and sums of integrals in Exercises 9–14 give the areas of
regions in the xy-plane. Sketch each region, label each bounding curve
with its equation, and give the coordinates of the points where the
curves intersect. Then find the area of the region.

9. 10.

11. 12.

13.

14.

Average Values
15. Find the average value of over

a. the rectangle 

b. the rectangle 

16. Which do you think will be larger, the average value of
over the square or the aver-

age value of ƒ over the quarter circle in the first
quadrant? Calculate them to find out.

x2 + y2 … 1
0 … x … 1, 0 … y … 1,ƒsx, yd = xy

0 … x … p, 0 … y … p>20 … x … p, 0 … y … p
ƒsx, yd = sin sx + yd

L
2

0
 L

0

x2-4
 dy dx + L

4

0
 L
2x

0
 dy dx

L
0

-1
 L

1-x

-2x
 dy dx + L

2

0
 L

1-x

-x>2  dy dx

L
2

-1
 L

y+2

y2
 dx dyL

p>4
0

 L
cos x

sin x
 dy dx

L
3

0
 L

xs2-xd

-x
 dy dxL

6

0
 L

2y

y2>3 dx dy

x = 2y2 - 2x = y2 - 1

x = 2y - y2x = y2

x = e,y = 2 ln xy = ln x

x = ln 2y = 0, x = 0,y = ex

y = -xx = y - y2

y = x + 2x = -y2

y = 4x = 0, y = 2x ,

x + y = 2

17. Find the average height of the paraboloid over the
square 

18. Find the average value of over the square

Constant Density
19. Finding center of mass Find a center of mass of a thin plate of

density bounded by the lines and the
parabola in the first quadrant.

20. Finding moments of inertia and radii of gyration Find the
moments of inertia and radii of gyration about the coordinate axes
of a thin rectangular plate of constant density bounded by the
lines and in the first quadrant.

21. Finding a centroid Find the centroid of the region in the first
quadrant bounded by the x-axis, the parabola and the line

22. Finding a centroid Find the centroid of the triangular region
cut from the first quadrant by the line 

23. Finding a centroid Find the centroid of the semicircular region
bounded by the x-axis and the curve 

24. Finding a centroid The area of the region in the first quadrant
bounded by the parabola and the line is
125 6 square units. Find the centroid.

25. Finding a centroid Find the centroid of the region cut from the
first quadrant by the circle 

26. Finding a centroid Find the centroid of the region between the
x-axis and the arch 

27. Finding moments of inertia Find the moment of inertia about
the x-axis of a thin plate of density bounded by the circle

Then use your result to find and for the plate.

28. Finding a moment of inertia Find the moment of inertia with
respect to the y-axis of a thin sheet of constant density 
bounded by the curve and the interval

of the x-axis.

29. The centroid of an infinite region Find the centroid of the
infinite region in the second quadrant enclosed by the coordinate
axes and the curve (Use improper integrals in the mass-
moment formulas.)

y = ex.

p … x … 2p
y = ssin2 xd>x2

d = 1

I0Iyx2 + y2 = 4.
d = 1

y = sin x, 0 … x … p.

x2 + y2 = a2.

> y = xy = 6x - x2

y = 21 - x2.

x + y = 3.

x + y = 4.
y2 = 2x,

y = 3x = 3
d

y = 2 - x2
x = 0, y = x,d = 3

ln 2 … x … 2 ln 2, ln 2 … y … 2 ln 2.
ƒsx, yd = 1>sxyd

0 … x … 2, 0 … y … 2.
z = x2 + y2
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EXERCISES 15.2

Area by Double Integration
In Exercises 1–8, sketch the region bounded by the given lines and
curves. Then express the region’s area as an iterated double integral
and evaluate the integral.

1. The coordinate axes and the line 

2. The lines and 

3. The parabola and the line 

4. The parabola and the line 

5. The curve and the lines and 

6. The curves and and the line in the first
quadrant

7. The parabolas and 

8. The parabolas and 

Identifying the Region of Integration
The integrals and sums of integrals in Exercises 9–14 give the areas of
regions in the xy-plane. Sketch each region, label each bounding curve
with its equation, and give the coordinates of the points where the
curves intersect. Then find the area of the region.

9. 10.

11. 12.

13.

14.

Average Values
15. Find the average value of over

a. the rectangle 

b. the rectangle 

16. Which do you think will be larger, the average value of
over the square or the aver-

age value of ƒ over the quarter circle in the first
quadrant? Calculate them to find out.

x2 + y2 … 1
0 … x … 1, 0 … y … 1,ƒsx, yd = xy

0 … x … p, 0 … y … p>20 … x … p, 0 … y … p
ƒsx, yd = sin sx + yd

L
2

0
 L

0

x2-4
 dy dx + L

4

0
 L
2x

0
 dy dx

L
0

-1
 L

1-x

-2x
 dy dx + L

2

0
 L

1-x

-x>2  dy dx

L
2

-1
 L

y+2

y2
 dx dyL

p>4
0

 L
cos x

sin x
 dy dx

L
3

0
 L

xs2-xd

-x
 dy dxL

6

0
 L

2y

y2>3 dx dy

x = 2y2 - 2x = y2 - 1

x = 2y - y2x = y2

x = e,y = 2 ln xy = ln x

x = ln 2y = 0, x = 0,y = ex

y = -xx = y - y2

y = x + 2x = -y2

y = 4x = 0, y = 2x ,

x + y = 2

17. Find the average height of the paraboloid over the
square 

18. Find the average value of over the square

Constant Density
19. Finding center of mass Find a center of mass of a thin plate of

density bounded by the lines and the
parabola in the first quadrant.

20. Finding moments of inertia and radii of gyration Find the
moments of inertia and radii of gyration about the coordinate axes
of a thin rectangular plate of constant density bounded by the
lines and in the first quadrant.

21. Finding a centroid Find the centroid of the region in the first
quadrant bounded by the x-axis, the parabola and the line

22. Finding a centroid Find the centroid of the triangular region
cut from the first quadrant by the line 

23. Finding a centroid Find the centroid of the semicircular region
bounded by the x-axis and the curve 

24. Finding a centroid The area of the region in the first quadrant
bounded by the parabola and the line is
125 6 square units. Find the centroid.

25. Finding a centroid Find the centroid of the region cut from the
first quadrant by the circle 

26. Finding a centroid Find the centroid of the region between the
x-axis and the arch 

27. Finding moments of inertia Find the moment of inertia about
the x-axis of a thin plate of density bounded by the circle

Then use your result to find and for the plate.

28. Finding a moment of inertia Find the moment of inertia with
respect to the y-axis of a thin sheet of constant density 
bounded by the curve and the interval

of the x-axis.

29. The centroid of an infinite region Find the centroid of the
infinite region in the second quadrant enclosed by the coordinate
axes and the curve (Use improper integrals in the mass-
moment formulas.)

y = ex.

p … x … 2p
y = ssin2 xd>x2

d = 1

I0Iyx2 + y2 = 4.
d = 1

y = sin x, 0 … x … p.

x2 + y2 = a2.

> y = xy = 6x - x2

y = 21 - x2.

x + y = 3.

x + y = 4.
y2 = 2x,

y = 3x = 3
d

y = 2 - x2
x = 0, y = x,d = 3

ln 2 … x … 2 ln 2, ln 2 … y … 2 ln 2.
ƒsx, yd = 1>sxyd

0 … x … 2, 0 … y … 2.
z = x2 + y2
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7
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My = 3
∫ 1

0

∫ 2−x2

x
(x) dx dy

= 3
∫ 1

0
(xy)2−x2

x dx

= 3
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0

(
2x− x2 − x2

)
dx =

5
4

Mx = 3
∫ 1

0
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x
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19
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18. average    dy dx   dxœ œ" " "
(ln 2) xy (ln 2) x

ln y' ' '
ln 2 ln 2 ln 2

2 ln 2 2 ln 2 2 ln 2 2 ln 2

ln 2
 ’ “

  (ln 2 ln ln 2 ln ln 2) dx ln xœ ! " œ œ" " " "
#(ln 2) x ln 2 x ln 

dx' '
ln 2 ln 2

2 ln 2 2 ln 2 2 ln 2

ln 2
ˆ ‰ ˆ ‰ c d

 (ln 2 ln ln 2 ln ln 2) 1œ ! " œˆ ‰"
#ln 

19. M 3 dy dx 3 2 x x  dx ; M  3x dy dx 3 xy  dxœ œ " " œ œ œ' ' ' ' ' '
0 x 0 0 x 0

1 2 x 1 1 2 x 1

y
2 x
xa b c d#

#
7

 3 2x x x  dx ; M  3y dy dx  y  dx  4 5x x  dxœ " " œ œ œ œ " ! œ' ' ' ' '
0 0 x 0 0

1 1 2 x 1 1

x
2 x

xa b c d a b$ # # # %
# #

5 3 3 19
4 5

  x  and yÊ œ œ5 38
14 35

20. M   dy dx  3 dx 9 ; I  y  dy dx  dx 27 ; R 3;œ œ œ œ œ œ œ œ$ $ $ $ $ $' ' ' ' ' '
0 0 0 0 0 0

3 3 3 3 3 3

x x

3

0

# ’ “ É Èy
3 M

Ix

 I  x  dy dx x y  dx  3x  dx 27 ; R 3y y0 0 0 0

3 3 3 3

œ œ œ œ œ œ$ $ $ $' ' ' '# # #$
!c d É ÈI

M
y

21. M dx dy 4 y  dy ; M  x dx dy x  dyœ œ " " œ œ œ' ' ' ' ' '
0 y 2 0 0 y 2 0

2 4 y 2 2 4 y 2

y
4 y

y 2Š ‹ c dy 14
3# #

" #

  16 8y y  dy ; M y dx dy 4y y  dyœ " ! " œ œ œ " " œ"
# #

# #' ' ' '
0 0 y 2 0

2 2 4 y 2

xŠ ‹ Š ‹y y
4 15 3

128 10 

  x  and yÊ œ œ64 5
35 7

22. M dy dx (3 x) dx ; M x dy dx xy  dx 3x x  dxœ œ " œ œ œ œ " œ' ' ' ' ' ' '
0 0 0 0 0 0 0

3 3 x 3 3 3 x 3 3

y
3 x
0

9 9
# #

# c d a b
  x 1 and y 1, by symmetryÊ œ œ

23. M 2 dy dx 2 1 x  dx 2 ; M 2 y dy dx y  dxœ œ " œ œ œ œ' ' ' ' ' '
0 0 0 0 0 0

1 1 x 1 1 1 x 1

x
1 x

0
È ˆ ‰ c d#

#
#1 1

4

 1 x  dx x   y  and x 0, by symmetryœ " œ " œ Ê œ œ'
0

1a b ’ “#
"

!

x 2 4
3 3 31

24. M ; M  x dy dx  xy  dx  5x x  dx ;œ œ œ œ " œ125 625
6 1
$ $

y 0 x 0 0

5 6x x 5 5
6x x
x$ $ $' ' ' 'c d a b# $

#

 M  y dy dx  y  dx  35x 12x x  dx   x  and y 5x 0 x 0 0

5 6x x 5 56x x

xœ œ œ " ! œ Ê œ œ$ ' ' ' '$ $ $

# # #
# # $ %c d a b 625 5

6

25. M  dy dx ; M x dy dx xy  dx x a x  dxœ œ œ œ œ " œ' ' ' ' ' '
0 0 0 0 0 0

a a x a a x a a

y
a x

0
1a a
4 3c d È # #

  x y , by symmetryÊ œ œ 4a
31

26. M dy dx sin x dx 2; M y dy dx  y  dx  sin x dxœ œ œ œ œ œ' ' ' ' ' ' '
0 0 0 0 0 0 0

sin x sin x

x
sin x

0
" "
# #

# #c d
  (1 cos 2x) dx   x  and yœ " œ Ê œ œ"

#4 4 8
'

0

1 1 1

27. I   y  dy dx  dx  4 x  dx 4 ; I 4 , by symmetry;x y2 4 x 2 2

2 4 x 2 24 x

4 x
œ œ œ " œ œ' ' ' '# # $Î#’ “ a by

3 3
2

1 1

 I I I 8o x yœ ! œ 1

28. I x  dy dx sin x 0  dx  (1 cos 2x) dxy

2 sin x x 2 2

0
œ œ " œ " œ' ' ' '# # "

# #a b 1

29. M dy dx e  dx  lim   e  dx 1  lim   e 1; M x dy dx xe  dxœ œ œ œ " œ œ œ' ' ' ' ' ' '0 e 0 0 0 e 0

0 b 0
x x b x

y

x x

b bÄ !_ Ä !_

  lim   xe  dx  lim   xe e 1  lim   be e 1; M y dy dxœ œ " œ " " " œ " œ
b b bÄ !_ Ä !_ Ä !_

' ' '
b 0

0 0 e
x x x b b0

b xc d a b
x
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18. average    dy dx   dxœ œ" " "
(ln 2) xy (ln 2) x

ln y' ' '
ln 2 ln 2 ln 2

2 ln 2 2 ln 2 2 ln 2 2 ln 2

ln 2
 ’ “

  (ln 2 ln ln 2 ln ln 2) dx ln xœ ! " œ œ" " " "
#(ln 2) x ln 2 x ln 

dx' '
ln 2 ln 2

2 ln 2 2 ln 2 2 ln 2

ln 2
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 (ln 2 ln ln 2 ln ln 2) 1œ ! " œˆ ‰"
#ln 

19. M 3 dy dx 3 2 x x  dx ; M  3x dy dx 3 xy  dxœ œ " " œ œ œ' ' ' ' ' '
0 x 0 0 x 0

1 2 x 1 1 2 x 1

y
2 x
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#
7

 3 2x x x  dx ; M  3y dy dx  y  dx  4 5x x  dxœ " " œ œ œ œ " ! œ' ' ' ' '
0 0 x 0 0

1 1 2 x 1 1

x
2 x

xa b c d a b$ # # # %
# #

5 3 3 19
4 5

  x  and yÊ œ œ5 38
14 35

20. M   dy dx  3 dx 9 ; I  y  dy dx  dx 27 ; R 3;œ œ œ œ œ œ œ œ$ $ $ $ $ $' ' ' ' ' '
0 0 0 0 0 0

3 3 3 3 3 3
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3

0
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21. M dx dy 4 y  dy ; M  x dx dy x  dyœ œ " " œ œ œ' ' ' ' ' '
0 y 2 0 0 y 2 0

2 4 y 2 2 4 y 2

y
4 y

y 2Š ‹ c dy 14
3# #

" #

  16 8y y  dy ; M y dx dy 4y y  dyœ " ! " œ œ œ " " œ"
# #

# #' ' ' '
0 0 y 2 0

2 2 4 y 2

xŠ ‹ Š ‹y y
4 15 3
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  x  and yÊ œ œ64 5
35 7

22. M dy dx (3 x) dx ; M x dy dx xy  dx 3x x  dxœ œ " œ œ œ œ " œ' ' ' ' ' ' '
0 0 0 0 0 0 0

3 3 x 3 3 3 x 3 3

y
3 x
0

9 9
# #

# c d a b
  x 1 and y 1, by symmetryÊ œ œ

23. M 2 dy dx 2 1 x  dx 2 ; M 2 y dy dx y  dxœ œ " œ œ œ œ' ' ' ' ' '
0 0 0 0 0 0

1 1 x 1 1 1 x 1

x
1 x

0
È ˆ ‰ c d#

#
#1 1

4

 1 x  dx x   y  and x 0, by symmetryœ " œ " œ Ê œ œ'
0

1a b ’ “#
"

!

x 2 4
3 3 31

24. M ; M  x dy dx  xy  dx  5x x  dx ;œ œ œ œ " œ125 625
6 1
$ $

y 0 x 0 0

5 6x x 5 5
6x x
x$ $ $' ' ' 'c d a b# $

#

 M  y dy dx  y  dx  35x 12x x  dx   x  and y 5x 0 x 0 0

5 6x x 5 56x x

xœ œ œ " ! œ Ê œ œ$ ' ' ' '$ $ $
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# # $ %c d a b 625 5

6

25. M  dy dx ; M x dy dx xy  dx x a x  dxœ œ œ œ œ " œ' ' ' ' ' '
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a a x a a x a a

y
a x

0
1a a
4 3c d È # #

  x y , by symmetryÊ œ œ 4a
31

26. M dy dx sin x dx 2; M y dy dx  y  dx  sin x dxœ œ œ œ œ œ' ' ' ' ' ' '
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sin x sin x

x
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0
" "
# #

# #c d
  (1 cos 2x) dx   x  and yœ " œ Ê œ œ"

#4 4 8
'

0

1 1 1

27. I   y  dy dx  dx  4 x  dx 4 ; I 4 , by symmetry;x y2 4 x 2 2

2 4 x 2 24 x

4 x
œ œ œ " œ œ' ' ' '# # $Î#’ “ a by

3 3
2

1 1

 I I I 8o x yœ ! œ 1

28. I x  dy dx sin x 0  dx  (1 cos 2x) dxy

2 sin x x 2 2

0
œ œ " œ " œ' ' ' '# # "

# #a b 1

29. M dy dx e  dx  lim   e  dx 1  lim   e 1; M x dy dx xe  dxœ œ œ œ " œ œ œ' ' ' ' ' ' '0 e 0 0 0 e 0

0 b 0
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Problema 5.

Encuentre el momento de inercia respecto al eje y de 
una lamina delgada de densidad constante            

delimitada por la curva                    y el intervalo   
                      en el eje x.

δ = 1

y =
sen2(x)

x2
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EXERCISES 15.2

Area by Double Integration
In Exercises 1–8, sketch the region bounded by the given lines and
curves. Then express the region’s area as an iterated double integral
and evaluate the integral.

1. The coordinate axes and the line 

2. The lines and 

3. The parabola and the line 

4. The parabola and the line 

5. The curve and the lines and 

6. The curves and and the line in the first
quadrant

7. The parabolas and 

8. The parabolas and 

Identifying the Region of Integration
The integrals and sums of integrals in Exercises 9–14 give the areas of
regions in the xy-plane. Sketch each region, label each bounding curve
with its equation, and give the coordinates of the points where the
curves intersect. Then find the area of the region.

9. 10.

11. 12.

13.

14.

Average Values
15. Find the average value of over

a. the rectangle 

b. the rectangle 

16. Which do you think will be larger, the average value of
over the square or the aver-

age value of ƒ over the quarter circle in the first
quadrant? Calculate them to find out.

x2 + y2 … 1
0 … x … 1, 0 … y … 1,ƒsx, yd = xy

0 … x … p, 0 … y … p>20 … x … p, 0 … y … p
ƒsx, yd = sin sx + yd

L
2

0
 L

0

x2-4
 dy dx + L

4

0
 L
2x

0
 dy dx

L
0

-1
 L

1-x

-2x
 dy dx + L

2

0
 L

1-x

-x>2  dy dx

L
2

-1
 L

y+2

y2
 dx dyL

p>4
0

 L
cos x

sin x
 dy dx

L
3

0
 L

xs2-xd

-x
 dy dxL

6

0
 L

2y

y2>3 dx dy

x = 2y2 - 2x = y2 - 1

x = 2y - y2x = y2

x = e,y = 2 ln xy = ln x

x = ln 2y = 0, x = 0,y = ex

y = -xx = y - y2

y = x + 2x = -y2

y = 4x = 0, y = 2x ,

x + y = 2

17. Find the average height of the paraboloid over the
square 

18. Find the average value of over the square

Constant Density
19. Finding center of mass Find a center of mass of a thin plate of

density bounded by the lines and the
parabola in the first quadrant.

20. Finding moments of inertia and radii of gyration Find the
moments of inertia and radii of gyration about the coordinate axes
of a thin rectangular plate of constant density bounded by the
lines and in the first quadrant.

21. Finding a centroid Find the centroid of the region in the first
quadrant bounded by the x-axis, the parabola and the line

22. Finding a centroid Find the centroid of the triangular region
cut from the first quadrant by the line 

23. Finding a centroid Find the centroid of the semicircular region
bounded by the x-axis and the curve 

24. Finding a centroid The area of the region in the first quadrant
bounded by the parabola and the line is
125 6 square units. Find the centroid.

25. Finding a centroid Find the centroid of the region cut from the
first quadrant by the circle 

26. Finding a centroid Find the centroid of the region between the
x-axis and the arch 

27. Finding moments of inertia Find the moment of inertia about
the x-axis of a thin plate of density bounded by the circle

Then use your result to find and for the plate.

28. Finding a moment of inertia Find the moment of inertia with
respect to the y-axis of a thin sheet of constant density 
bounded by the curve and the interval

of the x-axis.

29. The centroid of an infinite region Find the centroid of the
infinite region in the second quadrant enclosed by the coordinate
axes and the curve (Use improper integrals in the mass-
moment formulas.)

y = ex.

p … x … 2p
y = ssin2 xd>x2

d = 1

I0Iyx2 + y2 = 4.
d = 1

y = sin x, 0 … x … p.

x2 + y2 = a2.

> y = xy = 6x - x2

y = 21 - x2.

x + y = 3.

x + y = 4.
y2 = 2x,

y = 3x = 3
d

y = 2 - x2
x = 0, y = x,d = 3

ln 2 … x … 2 ln 2, ln 2 … y … 2 ln 2.
ƒsx, yd = 1>sxyd

0 … x … 2, 0 … y … 2.
z = x2 + y2
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Ejercicio 4.

Encuentre el centro de masa de una plato triangular 
delgado delimitado por las rectas             y                si 
la  densidad esta dada por:

(R)

30. The first moment of an infinite plate Find the first moment
about the y-axis of a thin plate of density covering the
infinite region under the curve in the first quadrant.

Variable Density
31. Finding a moment of inertia and radius of gyration Find the

moment of inertia and radius of gyration about the x-axis of a thin
plate bounded by the parabola and the line

if 

32. Finding mass Find the mass of a thin plate occupying the
smaller region cut from the ellipse by the
parabola if 

33. Finding a center of mass Find the center of mass of a thin tri-
angular plate bounded by the y-axis and the lines and

if 

34. Finding a center of mass and moment of inertia Find the
center of mass and moment of inertia about the x-axis of a thin
plate bounded by the curves and if the den-
sity at the point (x, y) is 

35. Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the y-axis of a thin rectangular plate cut from the
first quadrant by the lines and if 

36. Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the y-axis of a thin plate bounded by the line

and the parabola if the density is 

37. Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the y-axis of a thin plate bounded by the x-axis, the
lines and the parabola if 

38. Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the x-axis of a thin rectangular plate bounded by
the lines and if 

39. Center of mass, moments of inertia, and radii of gyration
Find the center of mass, the moment of inertia and radii of gyra-
tion about the coordinate axes, and the polar moment of inertia
and radius of gyration of a thin triangular plate bounded by the
lines and if 

40. Center of mass, moments of inertia, and radii of gyration
Repeat Exercise 39 for 

Theory and Examples
41. Bacterium population If 

represents the “population density” of a certain bacterium on
the xy-plane, where x and y are measured in centimeters, find
the total population of bacteria within the rectangle

and -2 … y … 0.-5 … x … 5

ƒsx, yd = s10,000e yd>s1 + ƒ x ƒ>2d
dsx, yd = 3x2 + 1.

dsx, yd = y + 1.y = 1y = x, y = -x,

sx>20d.
dsx, yd = 1 +y = 1x = 0, x = 20, y = -1,

dsx, yd = 7y + 1.y = x2x = ;1,

dsx, yd = y + 1.y = x2y = 1

y + 1.
dsx, yd = x +y = 1x = 6

dsx, yd = y + 1.
x = 2y - y2x = y2

dsx, yd = 6x + 3y + 3.y = 2 - x
y = x

dsx, yd = 5x.x = 4y2
x2 + 4y2 = 12

dsx, yd = x + y.x + y = 0
x = y - y2

y = e-x2>2dsx, yd = 1
42. Regional population If represents the

population density of a planar region on Earth, where x and y are
measured in miles, find the number of people in the region
bounded by the curves and 

43. Appliance design When we design an appliance, one of the
concerns is how hard the appliance will be to tip over. When
tipped, it will right itself as long as its center of mass lies on the
correct side of the fulcrum, the point on which the appliance is
riding as it tips. Suppose that the profile of an appliance of ap-
proximately constant density is parabolic, like an old-fashioned
radio. It fills the region in the
xy-plane (see accompanying figure). What values of a will guar-
antee that the appliance will have to be tipped more than 45° to
fall over?

44. Minimizing a moment of inertia A rectangular plate of con-
stant density occupies the region bounded by the
lines and in the first quadrant. The moment of iner-
tia of the rectangle about the line is given by the integral

Find the value of a that minimizes 

45. Centroid of unbounded region Find the centroid of the infinite
region in the xy-plane bounded by the curves 

and the lines 

46. Radius of gyration of slender rod Find the radius of gyration
of a slender rod of constant linear density and length L
cm with respect to an axis

a. through the rod’s center of mass perpendicular to the rod’s
axis.

b. perpendicular to the rod’s axis at one end of the rod.

47. (Continuation of Exercise 34.) A thin plate of now constant den-
sity occupies the region R in the xy-plane bounded by the curves

and 

a. Constant density Find such that the plate has the same
mass as the plate in Exercise 34.

b. Average value Compare the value of found in part (a)
with the average value of over R.dsx, yd = y + 1

d

d

x = 2y - y2.x = y2
d

d gm>cm

x = 0, x = 1.y = -1>21 - x2,

y = 1>21 - x2,

Ia.

Ia = L
4

0
 L

2

0
s y - ad2 dy dx.

y = aIa

y = 2x = 4
dsx, yd = 1

0

Fulcrum

1–1

a

c.m.

c.m.

x

y

y ! a(1 " x2)

0 … y … as1 - x2d, -1 … x … 1,

x = 2y - y2.x = y2

ƒsx, yd = 100 sy + 1d
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30. The first moment of an infinite plate Find the first moment
about the y-axis of a thin plate of density covering the
infinite region under the curve in the first quadrant.

Variable Density
31. Finding a moment of inertia and radius of gyration Find the

moment of inertia and radius of gyration about the x-axis of a thin
plate bounded by the parabola and the line

if 

32. Finding mass Find the mass of a thin plate occupying the
smaller region cut from the ellipse by the
parabola if 

33. Finding a center of mass Find the center of mass of a thin tri-
angular plate bounded by the y-axis and the lines and

if 

34. Finding a center of mass and moment of inertia Find the
center of mass and moment of inertia about the x-axis of a thin
plate bounded by the curves and if the den-
sity at the point (x, y) is 

35. Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the y-axis of a thin rectangular plate cut from the
first quadrant by the lines and if 

36. Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the y-axis of a thin plate bounded by the line

and the parabola if the density is 

37. Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the y-axis of a thin plate bounded by the x-axis, the
lines and the parabola if 

38. Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the x-axis of a thin rectangular plate bounded by
the lines and if 

39. Center of mass, moments of inertia, and radii of gyration
Find the center of mass, the moment of inertia and radii of gyra-
tion about the coordinate axes, and the polar moment of inertia
and radius of gyration of a thin triangular plate bounded by the
lines and if 

40. Center of mass, moments of inertia, and radii of gyration
Repeat Exercise 39 for 

Theory and Examples
41. Bacterium population If 

represents the “population density” of a certain bacterium on
the xy-plane, where x and y are measured in centimeters, find
the total population of bacteria within the rectangle

and -2 … y … 0.-5 … x … 5

ƒsx, yd = s10,000e yd>s1 + ƒ x ƒ>2d
dsx, yd = 3x2 + 1.

dsx, yd = y + 1.y = 1y = x, y = -x,

sx>20d.
dsx, yd = 1 +y = 1x = 0, x = 20, y = -1,

dsx, yd = 7y + 1.y = x2x = ;1,

dsx, yd = y + 1.y = x2y = 1

y + 1.
dsx, yd = x +y = 1x = 6

dsx, yd = y + 1.
x = 2y - y2x = y2

dsx, yd = 6x + 3y + 3.y = 2 - x
y = x

dsx, yd = 5x.x = 4y2
x2 + 4y2 = 12

dsx, yd = x + y.x + y = 0
x = y - y2

y = e-x2>2dsx, yd = 1
42. Regional population If represents the

population density of a planar region on Earth, where x and y are
measured in miles, find the number of people in the region
bounded by the curves and 

43. Appliance design When we design an appliance, one of the
concerns is how hard the appliance will be to tip over. When
tipped, it will right itself as long as its center of mass lies on the
correct side of the fulcrum, the point on which the appliance is
riding as it tips. Suppose that the profile of an appliance of ap-
proximately constant density is parabolic, like an old-fashioned
radio. It fills the region in the
xy-plane (see accompanying figure). What values of a will guar-
antee that the appliance will have to be tipped more than 45° to
fall over?

44. Minimizing a moment of inertia A rectangular plate of con-
stant density occupies the region bounded by the
lines and in the first quadrant. The moment of iner-
tia of the rectangle about the line is given by the integral

Find the value of a that minimizes 

45. Centroid of unbounded region Find the centroid of the infinite
region in the xy-plane bounded by the curves 

and the lines 

46. Radius of gyration of slender rod Find the radius of gyration
of a slender rod of constant linear density and length L
cm with respect to an axis

a. through the rod’s center of mass perpendicular to the rod’s
axis.

b. perpendicular to the rod’s axis at one end of the rod.

47. (Continuation of Exercise 34.) A thin plate of now constant den-
sity occupies the region R in the xy-plane bounded by the curves

and 

a. Constant density Find such that the plate has the same
mass as the plate in Exercise 34.

b. Average value Compare the value of found in part (a)
with the average value of over R.dsx, yd = y + 1

d

d

x = 2y - y2.x = y2
d

d gm>cm

x = 0, x = 1.y = -1>21 - x2,

y = 1>21 - x2,

Ia.

Ia = L
4

0
 L

2

0
s y - ad2 dy dx.

y = aIa

y = 2x = 4
dsx, yd = 1

0

Fulcrum

1–1

a

c.m.

c.m.

x

y

y ! a(1 " x2)

0 … y … as1 - x2d, -1 … x … 1,

x = 2y - y2.x = y2

ƒsx, yd = 100 sy + 1d
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30. The first moment of an infinite plate Find the first moment
about the y-axis of a thin plate of density covering the
infinite region under the curve in the first quadrant.

Variable Density
31. Finding a moment of inertia and radius of gyration Find the

moment of inertia and radius of gyration about the x-axis of a thin
plate bounded by the parabola and the line

if 

32. Finding mass Find the mass of a thin plate occupying the
smaller region cut from the ellipse by the
parabola if 

33. Finding a center of mass Find the center of mass of a thin tri-
angular plate bounded by the y-axis and the lines and

if 

34. Finding a center of mass and moment of inertia Find the
center of mass and moment of inertia about the x-axis of a thin
plate bounded by the curves and if the den-
sity at the point (x, y) is 

35. Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the y-axis of a thin rectangular plate cut from the
first quadrant by the lines and if 

36. Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the y-axis of a thin plate bounded by the line

and the parabola if the density is 

37. Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the y-axis of a thin plate bounded by the x-axis, the
lines and the parabola if 

38. Center of mass, moment of inertia, and radius of gyration
Find the center of mass and the moment of inertia and radius of
gyration about the x-axis of a thin rectangular plate bounded by
the lines and if 

39. Center of mass, moments of inertia, and radii of gyration
Find the center of mass, the moment of inertia and radii of gyra-
tion about the coordinate axes, and the polar moment of inertia
and radius of gyration of a thin triangular plate bounded by the
lines and if 

40. Center of mass, moments of inertia, and radii of gyration
Repeat Exercise 39 for 

Theory and Examples
41. Bacterium population If 

represents the “population density” of a certain bacterium on
the xy-plane, where x and y are measured in centimeters, find
the total population of bacteria within the rectangle

and -2 … y … 0.-5 … x … 5

ƒsx, yd = s10,000e yd>s1 + ƒ x ƒ>2d
dsx, yd = 3x2 + 1.

dsx, yd = y + 1.y = 1y = x, y = -x,

sx>20d.
dsx, yd = 1 +y = 1x = 0, x = 20, y = -1,

dsx, yd = 7y + 1.y = x2x = ;1,

dsx, yd = y + 1.y = x2y = 1

y + 1.
dsx, yd = x +y = 1x = 6

dsx, yd = y + 1.
x = 2y - y2x = y2

dsx, yd = 6x + 3y + 3.y = 2 - x
y = x

dsx, yd = 5x.x = 4y2
x2 + 4y2 = 12

dsx, yd = x + y.x + y = 0
x = y - y2

y = e-x2>2dsx, yd = 1
42. Regional population If represents the

population density of a planar region on Earth, where x and y are
measured in miles, find the number of people in the region
bounded by the curves and 

43. Appliance design When we design an appliance, one of the
concerns is how hard the appliance will be to tip over. When
tipped, it will right itself as long as its center of mass lies on the
correct side of the fulcrum, the point on which the appliance is
riding as it tips. Suppose that the profile of an appliance of ap-
proximately constant density is parabolic, like an old-fashioned
radio. It fills the region in the
xy-plane (see accompanying figure). What values of a will guar-
antee that the appliance will have to be tipped more than 45° to
fall over?

44. Minimizing a moment of inertia A rectangular plate of con-
stant density occupies the region bounded by the
lines and in the first quadrant. The moment of iner-
tia of the rectangle about the line is given by the integral

Find the value of a that minimizes 

45. Centroid of unbounded region Find the centroid of the infinite
region in the xy-plane bounded by the curves 

and the lines 

46. Radius of gyration of slender rod Find the radius of gyration
of a slender rod of constant linear density and length L
cm with respect to an axis

a. through the rod’s center of mass perpendicular to the rod’s
axis.

b. perpendicular to the rod’s axis at one end of the rod.

47. (Continuation of Exercise 34.) A thin plate of now constant den-
sity occupies the region R in the xy-plane bounded by the curves

and 

a. Constant density Find such that the plate has the same
mass as the plate in Exercise 34.

b. Average value Compare the value of found in part (a)
with the average value of over R.dsx, yd = y + 1

d

d

x = 2y - y2.x = y2
d

d gm>cm

x = 0, x = 1.y = -1>21 - x2,

y = 1>21 - x2,

Ia.

Ia = L
4

0
 L

2

0
s y - ad2 dy dx.

y = aIa

y = 2x = 4
dsx, yd = 1

0

Fulcrum

1–1

a

c.m.

c.m.

x

y

y ! a(1 " x2)

0 … y … as1 - x2d, -1 … x … 1,

x = 2y - y2.x = y2

ƒsx, yd = 100 sy + 1d
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Ejercicio 4.

15.3 Double Integrals in Polar Form 1097

EXERCISES 15.3

Evaluating Polar Integrals
In Exercises 1–16, change the Cartesian integral into an equivalent
polar integral. Then evaluate the polar integral.

1. 2.

3. 4.

5. 6.

7. 8.

9.

10.

11.

12.

13.

14.

15.

16.

Finding Area in Polar Coordinates
17. Find the area of the region cut from the first quadrant by the curve

18. Cardioid overlapping a circle Find the area of the region that
lies inside the cardioid and outside the circle 

19. One leaf of a rose Find the area enclosed by one leaf of the rose

20. Snail shell Find the area of the region enclosed by the positive
x-axis and spiral The region looks like a
snail shell.

21. Cardioid in the first quadrant Find the area of the region cut
from the first quadrant by the cardioid 

22. Overlapping cardioids Find the area of the region common to
the interiors of the cardioids and r = 1 - cos u.r = 1 + cos u

r = 1 + sin u.

r = 4u>3, 0 … u … 2p.

r = 12 cos 3u.

r = 1.r = 1 + cos u

r = 2s2 - sin 2ud1>2.

L
1

-1
  L
21-x 2

-21-x 2
 

2
s1 + x2 + y2d2

 dy dx

L
1

-1
  L
21-y2

-21-y2
 ln sx2 + y2 + 1d dx dy

L
2

0
 L

0

-21- sy-1d2
 xy2 dx dy

L
2

0
 L
21- sx-1d2

0
 

x + y

x2 + y2 dy dx

L
1

0
 L
21-x2

0
 e-sx2+y2d dy dx

L
ln 2

0
 L
2sln 2d2-y2

0
 e2x2+y2

 dx dy

L
1

-1
  L

0

-21-y2
 
42x2 + y2

1 + x2 + y2 dx dy

L
0

-1 
  L

0

-21-x2
 

2

1 + 2x2 + y2
 dy dx

L
2

0
 L

x

0
 y dy dxL

6

0
 L

y

0
 x dx dy

L
2

0
 L
24-y2

0
sx2 + y2d dx dyL

a

-a
  L
2a2-x2

-2a2-x2
 dy dx

L
1

-1
  L
21-y2

-21-y2
 sx2 + y2d dy dxL

1

0
 L
21-y2

0
sx2 + y2d dx dy

L
1

-1
  L
21-x2

-21-x2
 dy dxL

1

-1
  L
21-x2

0
 dy dx

Masses and Moments
23. First moment of a plate Find the first moment about the x-axis

of a thin plate of constant density bounded below by
the x-axis and above by the cardioid 

24. Inertial and polar moments of a disk Find the moment of iner-
tia about the x-axis and the polar moment of inertia about the origin
of a thin disk bounded by the circle if the disk’s den-
sity at the point (x, y) is k a constant.

25. Mass of a plate Find the mass of a thin plate covering the
region outside the circle and inside the circle if
the plate’s density function is 

26. Polar moment of a cardioid overlapping circle Find the polar
moment of inertia about the origin of a thin plate covering the
region that lies inside the cardioid and outside the
circle if the plate’s density function is 

27. Centroid of a cardioid region Find the centroid of the region
enclosed by the cardioid 

28. Polar moment of a cardioid region Find the polar moment of
inertia about the origin of a thin plate enclosed by the cardioid

if the plate’s density function is 

Average Values
29. Average height of a hemisphere Find the average height of the

hemisphere above the disk 
in the xy-plane.

30. Average height of a cone Find the average height of the (single) 
cone above the disk in the xy-plane.

31. Average distance from interior of disk to center Find the av-
erage distance from a point P(x, y) in the disk to
the origin.

32. Average distance squared from a point in a disk to a point in
its boundary Find the average value of the square of the dis-
tance from the point P(x, y) in the disk to the
boundary point A(1, 0).

Theory and Examples
33. Converting to a polar integral Integrate 

over the region 

34. Converting to a polar integral Integrate 
over the region 

35. Volume of noncircular right cylinder The region that lies in-
side the cardioid and outside the circle is
the base of a solid right cylinder. The top of the cylinder lies in the
plane Find the cylinder’s volume.z = x.

r = 1r = 1 + cos u

1 … x2 + y2 … e2.[ln sx2 + y2d]>sx2 + y2d
ƒsx, yd =

1 … x2 + y2 … e.[ln sx2 + y2d]>2x2 + y2

ƒsx, yd =

x2 + y2 … 1

x2 + y2 … a2

x2 + y2 … a2z = 2x2 + y2

x2 + y2 … a2z = 2a2 - x2 - y2

dsx, yd = 1.r = 1 + cos u

r = 1 + cos u.

dsx, yd = 1>r2.r = 1
r = 1 - cos u

dsx, yd = 1>r.
r = 6 sin ur = 3

dsx, yd = ksx2 + y2d,
x2 + y2 = a2

r = 1 - cos u.
dsx, yd = 3,
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a)

b)

Evaluar las siguientes integrales:
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5 5 5c d

15.  ln x y 1  dx dy 4 ln r 1  r dr d 2 (ln 4 1) d (ln 4 1)' ' ' ' '
1 1 y 0 0 0

1 1 y 2 1 2

  a b a b# # #" " œ " œ ! œ !) ) 1

16.   dy dx 4  dr d 4  d 2 d' ' ' ' ' '
1 1 x 0 0 0 0

1 1 x 2 1 2 2
2 2r

1 x y 1 r 1 ra b a b! ! !
"
!

"

!
œ œ ! œ œ) ) ) 1! ‘

17.  r dr d 2 (2 sin 2 ) d 2( 1)' ' '
0 0 0

2 2 2 sin 2 2

 ) ) ) 1œ ! œ !

18. A 2 r dr d 2 cos cos  dœ œ " œ' ' '
0 1 0

2 1 cos 2

 ) ) ) )a b# !8
4
1

19. A 2 r dr d 144 cos 3  d 12œ œ œ' ' '
0 0 0

6 12 cos 3 6

) ) ) 1#

20. A r dr d   dœ œ œ' ' '
0 0 0

2 4 3 2

 ) ) )
8 64
9 27

# 1

21. A r dr d  2 sin  d 1œ œ " ! œ "' ' '
0 0 0

2 1 sin 2

) ) )
1 3 cos 2 3
2 8

ˆ ‰
# #

) 1

22. A 4 r dr d 2 2 cos  d 4œ œ ! " œ !' ' '
0 0 0

2 1 cos 2

 ) ) )ˆ ‰3 cos 2 3
2# #

) 1

23. M 3r  sin  dr d  (1 cos )  sin  d 4x 0 0 0

1 cos 

œ œ ! œ' ' '# $) ) ) ) )

24. I  y k x y  dy dx k  r  sin  dr d  d ;x a a x 0 0 0

a a x 2 a 2

œ " œ œ œ' ' ' ' '# # # & # "
#c da b ) ) )

ka 1 cos 2 ka
6 6

) 1

 I   k x y  dy dx k r  dr d  do a a x 0 0 0

a a x 2 a 2

œ " œ œ œ' ' ' ' 'a b# # &#
) )

ka ka
6 3

1

25. M 2  dr d 2 (6 sin 3) d 6 2 cos 6 3 2œ œ ! œ ! ! œ !' ' '
6 3 6

2 6 sin 2
2
6) ) ) ) ) 1c d È

26. I r dr d  cos 2 cos  d 2 sin 2o 2 1 2

3 2 1 cos 3 2 3 2

2
œ œ ! œ " ! œ "' ' ') ) ) ) )

" "
# # #

#a b ! ‘sin 2
4 4
) ) 1

27. M 2 r dr d (1 cos )  d ; M 2 r  cos  dr dœ œ " œ œ' ' ' ' '
0 0 0 0 0

1 cos 1 cos 

y ) ) ) ) )# #
#
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 2 cos 2 sin  cos  d   x  and y 0, by symmetryœ " " ! " œ Ê œ œ'
0
ˆ ‰4 cos 15 cos 4 5 5

3 24 4 4 6
) ) 1

) ) ) )#

28. I r  dr d  (1 cos )  do 0 0 0

2 1 cos 2

œ œ " œ' ' '$ %"
) ) )4 16
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29. average  r a r  dr d  a  dœ ! œ œ4 4 2a
a 3 a 31 1
' ' '

0 0 0

2 a 2

 È # # $) )

30. average  r  dr d  a  dœ œ œ4 4 2a
a 3 a 31 1
' ' '

0 0 0

2 a 2
# $) )

31. average   x y  dy dx r  dr d  dœ " œ œ œ" "# # #
1 1 1a a 3 3

a 2a' ' ' ' '
a a x 0 0 0

a a x 2 a 2È ) )
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1 1 y 0 0 0
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  a b a b# # #" " œ " œ ! œ !) ) 1

16.   dy dx 4  dr d 4  d 2 d' ' ' ' ' '
1 1 x 0 0 0 0

1 1 x 2 1 2 2
2 2r

1 x y 1 r 1 ra b a b! ! !
"
!

"

!
œ œ ! œ œ) ) ) 1! ‘

17.  r dr d 2 (2 sin 2 ) d 2( 1)' ' '
0 0 0

2 2 2 sin 2 2

 ) ) ) 1œ ! œ !

18. A 2 r dr d 2 cos cos  dœ œ " œ' ' '
0 1 0

2 1 cos 2

 ) ) ) )a b# !8
4
1

19. A 2 r dr d 144 cos 3  d 12œ œ œ' ' '
0 0 0

6 12 cos 3 6

) ) ) 1#

20. A r dr d   dœ œ œ' ' '
0 0 0

2 4 3 2

 ) ) )
8 64
9 27

# 1

21. A r dr d  2 sin  d 1œ œ " ! œ "' ' '
0 0 0

2 1 sin 2

) ) )
1 3 cos 2 3
2 8

ˆ ‰
# #

) 1

22. A 4 r dr d 2 2 cos  d 4œ œ ! " œ !' ' '
0 0 0

2 1 cos 2

 ) ) )ˆ ‰3 cos 2 3
2# #

) 1

23. M 3r  sin  dr d  (1 cos )  sin  d 4x 0 0 0

1 cos 

œ œ ! œ' ' '# $) ) ) ) )

24. I  y k x y  dy dx k  r  sin  dr d  d ;x a a x 0 0 0

a a x 2 a 2

œ " œ œ œ' ' ' ' '# # # & # "
#c da b ) ) )

ka 1 cos 2 ka
6 6

) 1

 I   k x y  dy dx k r  dr d  do a a x 0 0 0

a a x 2 a 2

œ " œ œ œ' ' ' ' 'a b# # &#
) )

ka ka
6 3

1

25. M 2  dr d 2 (6 sin 3) d 6 2 cos 6 3 2œ œ ! œ ! ! œ !' ' '
6 3 6

2 6 sin 2
2
6) ) ) ) ) 1c d È

26. I r dr d  cos 2 cos  d 2 sin 2o 2 1 2

3 2 1 cos 3 2 3 2

2
œ œ ! œ " ! œ "' ' ') ) ) ) )

" "
# # #

#a b ! ‘sin 2
4 4
) ) 1

27. M 2 r dr d (1 cos )  d ; M 2 r  cos  dr dœ œ " œ œ' ' ' ' '
0 0 0 0 0

1 cos 1 cos 

y ) ) ) ) )# #
#
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 2 cos 2 sin  cos  d   x  and y 0, by symmetryœ " " ! " œ Ê œ œ'
0
ˆ ‰4 cos 15 cos 4 5 5

3 24 4 4 6
) ) 1

) ) ) )#

28. I r  dr d  (1 cos )  do 0 0 0

2 1 cos 2

œ œ " œ' ' '$ %"
) ) )4 16
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29. average  r a r  dr d  a  dœ ! œ œ4 4 2a
a 3 a 31 1
' ' '

0 0 0

2 a 2

 È # # $) )

30. average  r  dr d  a  dœ œ œ4 4 2a
a 3 a 31 1
' ' '

0 0 0

2 a 2
# $) )

31. average   x y  dy dx r  dr d  dœ " œ œ œ" "# # #
1 1 1a a 3 3

a 2a' ' ' ' '
a a x 0 0 0

a a x 2 a 2È ) )

(R) a)

b)

25


